Disaster Misinformation and Its Corrections on Social Media: Spatiotemporal Proximity, Social Network, and Sentiment Contagion

被引:1
|
作者
Zhai, Wei [1 ]
Yu, Hang [2 ]
Song, Celine Yunya [3 ]
机构
[1] Univ Texas San Antonio, Sch Architecture & Planning, San Antonio, TX 78249 USA
[2] Brandeis Univ, Dept Comp Sci, Waltham, MA 02453 USA
[3] Hong Kong Baptist Univ, Sch Commun, Hong Kong, Peoples R China
关键词
disaster management; misinformation; sentiment contagion; social media; social networks; contagio de sentimientos; desinformacion; manejo de desastres; medios sociales de comunicacion; redes sociales; INFORMATION-SEEKING; TWITTER; CONTEXT; RUMOR; NEWS; UNCERTAINTY; RESILIENCE; PREDICTORS; PATTERNS; BEHAVIOR;
D O I
10.1080/24694452.2023.2271549
中图分类号
P9 [自然地理学]; K9 [地理];
学科分类号
0705 ; 070501 ;
摘要
Misinformation disseminated via online social networks can cause social confusion and result in inadequate responses during disasters and emergencies. To contribute to social media-based disaster resilience, we aim to decipher the spread of disaster misinformation and its correction through the case study of the disaster rumor during Hurricane Sandy (2012) on Twitter. We first leveraged social network analysis to identify different types of accounts that are influential in spreading and debunking disaster misinformation. Second, we examined how the spatiotemporal proximity to the rumor event influences the sharing of misinformation and the sharing of corrections on Twitter. Third, through sentiment analysis, we went further by examining how spatiotemporal and demographic similarity between social media users affect behavioral and emotional responses to misinformation. Finally, sentiment contagion across rumor and correction networks was also examined. Our findings generate novel insights into detecting and counteracting misinformation using social media with implications for disaster management. ???????????, ????????, ???????????????????????????????, ?????????(2012)?????????, ????????????????????????, ????????????????????????????????, ????????????????????????????????, ??????, ?????????????????????????, ?????????????????????, ???????????????????????????????????????, ??????? La desinformacion difundida en las redes sociales puede llevar a la confusion social y dar lugar a respuestas inadecuadas durante desastres y emergencias. Para contribuir a la resiliencia frente a los desastres a traves de los medios sociales, nos enfocamos a descifrar el proceso de difundir desinformacion, y a su correccion, a traves de un estudio de caso sobre el rumor de desastre durante el Huracan Sandy (2012), en Twitter. Primero de todo aplicamos analisis de redes sociales para identificar los diferentes tipos de cuenta que tienen influencia tanto en la difusion como en el desmentido de la desinformacion sobre desastres. En segundo lugar, examinamos como la proximidad espaciotemporal al evento del rumor influye en el proceso de compartir tanto la desinformacion como el intercambio de correcciones, en Twitter. Tercero, por medio del analisis de sentimiento, avanzamos aun mas al examinar como afectan la similitud espaciotemporal y demografica entre los usuarios de los medios sociales las respuestas conductuales y emocionales a la desinformacion. Finalmente, tambien se examino el contagio de sentimientos a traves de las redes de rumor y correccion. Nuestros hallazgos generan nuevas visiones para detectar desinformacion mediante el uso de los medios sociales, con implicaciones en el manejo de desastres, y como contrarrestarla.
引用
收藏
页码:408 / 435
页数:28
相关论文
共 50 条
  • [31] Heterogeneous Graph Network Embedding for Sentiment Analysis on Social Media
    Jin, Zhigang
    Zhao, Xiaofang
    Liu, Yuhong
    COGNITIVE COMPUTATION, 2021, 13 (01) : 81 - 95
  • [32] Heterogeneous Graph Network Embedding for Sentiment Analysis on Social Media
    Zhigang Jin
    Xiaofang Zhao
    Yuhong Liu
    Cognitive Computation, 2021, 13 : 81 - 95
  • [33] Measuring Emotional Contagion in Social Media
    Ferrara, Emilio
    Yang, Zeyao
    PLOS ONE, 2015, 10 (11):
  • [34] Sentiment Analysis on Social Media
    Neri, Federico
    Aliprandi, Carlo
    Capeci, Federico
    Cuadros, Montserrat
    By, Tomas
    2012 IEEE/ACM INTERNATIONAL CONFERENCE ON ADVANCES IN SOCIAL NETWORKS ANALYSIS AND MINING (ASONAM), 2012, : 919 - 926
  • [35] Sentiment Analysis for Social Media
    Iglesias, Carlos A.
    Moreno, Antonio
    APPLIED SCIENCES-BASEL, 2019, 9 (23):
  • [36] SOCIAL MEDIA CONTAGION: A PARALLEL PANDEMIC?
    Rice, Timothy
    JOURNAL OF THE AMERICAN ACADEMY OF CHILD AND ADOLESCENT PSYCHIATRY, 2022, 61 (10): : S107 - S107
  • [37] Exploit Social Relations in Sentiment Analysis of Social Media Content for Disaster Management Emergent Research Forum (ERF)
    Shivarkar, Pratik
    Wei, Wei
    AMCIS 2018 PROCEEDINGS, 2018,
  • [38] On the relation between message sentiment and its virality on social media
    Tsugawa S.
    Ohsaki H.
    Social Network Analysis and Mining, 2017, 7 (1)
  • [39] SENTIMENT REVEALED IN SOCIAL MEDIA AND ITS EFFECT ON THE STOCK MARKET
    Chen, Hailiang
    De, Prabuddha
    Hu, Yu
    Hwang, Byoung-Hyoun
    2011 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), 2011, : 25 - 28
  • [40] Social media sentiment polarization and its impact on product adoption
    Zhao, Ping
    Ma, Zhenfeng
    Gill, Tripat
    Ranaweera, Chatura
    MARKETING LETTERS, 2023, 34 (03) : 497 - 512