Prompt-Oriented Fine-Tuning Dual Bert for Aspect-Based Sentiment Analysis

被引:0
|
作者
Yin, Wen [1 ,2 ]
Xu, Yi [1 ,2 ]
Liu, Cencen [1 ,2 ]
Zheng, Dezhang [1 ,2 ]
Wang, Qi [3 ]
Liu, Chuanjie [3 ]
机构
[1] Univ Elect Sci & Technol China, Sch Informat & Software Engn, Chengdu 610054, Peoples R China
[2] Trusted Cloud Comp & Big Data Key Lab Sichuan Pro, Chengdu 611731, Peoples R China
[3] Chengdu Jiuzhou Elect Informat Syst Co Ltd, Chengdu, Peoples R China
来源
ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, ICANN 2023, PART X | 2023年 / 14263卷
基金
中国国家自然科学基金;
关键词
ABSA; BERT; Prompt learning;
D O I
10.1007/978-3-031-44204-9_42
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Aspect-Based Sentiment Analysis (ABSA) is a fine-grained sentiment analysis task that aims to predict sentiment polarity towards a specific aspect occurring in the given sentence. Recently, pre-trained language models such asBERThave shown great progress in this regard. However, due to the mismatch between pre-training and fine-tuning, dealing with informal expressions and complex sentences is facing challenges and it is worthwhile devoting much effort to this. To tackle this, in this paper, we propose a Prompt-oriented Fine-tuning Dual BERT (PFDualBERT) model that considers the complex semantic relevance and the scarce data samples simultaneously. To reduce the impact of such mismatches, we design a ProBERT influenced by the idea of prompt Learning. Specifically, we design a SemBERT module to capture semantic correlations. We refit SemBERT with aspect-based self-attention. The experimental results on three datasets certify that our PFDualBERT model outperforms state-of-the-artmethods, and our further analysis substantiates that our model can exhibit stable performance in low-resource environments.
引用
收藏
页码:505 / 517
页数:13
相关论文
共 50 条
  • [31] BERT Post-Training for Review Reading Comprehension and Aspect-based Sentiment Analysis
    Xu, Hu
    Liu, Bing
    Shu, Lei
    Yu, Philip S.
    2019 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL HLT 2019), VOL. 1, 2019, : 2324 - 2335
  • [32] Aspect-Based Sentiment Analysis as Fine-Grained Opinion Mining
    Diaz, Gerardo Ocampo
    Zhang, Xuanming
    Ng, Vincent
    PROCEEDINGS OF THE 12TH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION (LREC 2020), 2020, : 6804 - 6811
  • [33] A system for fine-grained aspect-based sentiment analysis of Chinese
    Lipenkova, Janna
    PROCEEDINGS OF THE 53RD ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS AND THE 7TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (ACL-IJCNLP 2015): SYSTEM DEMONSTRATIONS, 2015, : 55 - 60
  • [34] Dual-Objective Fine-Tuning of BERT for Entity Matching
    Peeters, Ralph
    Bizer, Christian
    PROCEEDINGS OF THE VLDB ENDOWMENT, 2021, 14 (10): : 1913 - 1921
  • [35] Sense-aware BERT and Multi-task Fine-tuning for Multimodal Sentiment Analysis
    Fang, Lingyong
    Liu, Gongshen
    Zhang, Ru
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [36] Supervised and Few-Shot Learning for Aspect-Based Sentiment Analysis of Instruction Prompt
    Huang, Jie
    Cui, Yunpeng
    Liu, Juan
    Liu, Ming
    ELECTRONICS, 2024, 13 (10)
  • [37] PGSO: Prompt-based Generative Sequence Optimization network for aspect-based sentiment analysis
    Dong, Hao
    Wei, Wei
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 265
  • [38] Cross-Domain Aspect-Based Sentiment Classification with a Pre-Training and Fine-Tuning Strategy for Low-Resource Domains
    Zhao, Chuanjun
    Wu, Meiling
    Yang, Xinyi
    Sun, Xuzhuang
    Wang, Suge
    Li, Deyu
    ACM TRANSACTIONS ON ASIAN AND LOW-RESOURCE LANGUAGE INFORMATION PROCESSING, 2024, 23 (04)
  • [39] Hierarchical dual graph convolutional network for aspect-based sentiment analysis
    Zhou, Ting
    Shen, Ying
    Chen, Kang
    Cao, Qing
    KNOWLEDGE-BASED SYSTEMS, 2023, 276
  • [40] Survey on aspect detection for aspect-based sentiment analysis
    Trusca, Maria Mihaela
    Frasincar, Flavius
    ARTIFICIAL INTELLIGENCE REVIEW, 2023, 56 (05) : 3797 - 3846