Synthesis and Interface Engineering in Heterojunctions of Tin-Selenide-Based Nanostructures for Photoelectrochemical Water Splitting

被引:7
|
作者
Barma, Sunil V. [1 ,2 ]
Jathar, Sagar B. [1 ,3 ]
Huang, Yi-Teng [4 ,5 ]
Jadhav, Yogesh A. [6 ]
Rahane, Ganesh K. [7 ]
Rokade, Avinash V. [1 ]
Nasane, Mamta P. [1 ]
Rahane, Swati N. [1 ]
Cross, Russell W. [8 ]
Suryawanshi, Mahesh P. [9 ]
Jo, Sae Byeok [2 ,10 ]
Hoye, Robert L. Z. [11 ,12 ]
Jadkar, Sandesh R. [1 ]
Dzade, Nelson Y. [13 ]
Rondiya, Sachin R. [7 ]
机构
[1] Savitribai Phule Pune Univ, Dept Phys, Pune 411007, India
[2] Sungkyunkwan Univ SKKU, Sch Chem Engn, Suwon 16419, South Korea
[3] Sungkyunkwan Univ, SKKU Adv Inst Nanotechnol SAINT, Suwon 16419, South Korea
[4] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England
[5] Univ Oxford, Inorgan Chem Lab, South Parks Rd, Cambridge CB3 0HE, England
[6] Symbiosis Int Deemed Univ SIU, Symbiosis Ctr Nanosci & Nanotechnol SCNN, Pune 412115, Maharashtra, India
[7] Indian Inst Sci, Dept Mat Engn, Bangalore 560012, India
[8] Cardiff Univ, Sch Chem, Cardiff CF10 3AT, Wales
[9] Univ New South Wales, Sch Photovolta & Renewable Energy Engn, Sydney, NSW 2052, Australia
[10] Sungkyunkwan Univ SKKU, SKKU Inst Energy Sci & Technol SIEST, Suwon 16419, South Korea
[11] Imperial Coll London, Dept Mat, London SW7 2AZ, England
[12] Univ Oxford, Inorgan Chem Lab, South Parks Rd, Oxford OX1 3QR, England
[13] Penn State Univ, Dept Energy & Mineral Engn, University Pk, PA 16802 USA
基金
英国工程与自然科学研究理事会;
关键词
SnSe microflowers; hot injection method; bandalignment; photoelectrochemical cell; heterojunction; THERMOELECTRIC PERFORMANCE; SNSE; FILMS; HETEROSTRUCTURE; SPECTROSCOPY; ABSORPTION; BATTERIES; EFFICIENT; CRYSTAL; PATHWAY;
D O I
10.1021/acsanm.3c05202
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
SnSe nanomaterials are challenging to use in sustainable energy production due to difficulties in phase-pure synthesis and efficient charge-carrier separation. We demonstrate a systematic facile synthesis method with an in-depth nucleation and growth mechanism for the rational design of phase-pure and morphology-controlled SnSe-based efficient and cost-effective photocatalysts. Transient absorption spectroscopy measurements are performed to investigate the charge-carrier kinetics of SnSe microflowers (MFs), which exhibit a free charge-carrier lifetime of 6.2 ps. Although the bare SnSe, CdSe, and ZnSe photoanodes demonstrate sizable photocurrents, the construction of CdSe/SnSe and ZnSe/SnSe heterojunctions dramatically improves the photoelectrochemical devices activity. The CdSe/SnSe photoanode shows higher photocurrents of 35 mu A cm(-2), compared to the ZnSe/SnSe (15 mu A cm(-2)) heterojunction and the individual SnSe (10 mu A cm(-2)), CdSe (7 mu A cm(-2)), and ZnSe (1 mu A cm(-2)). The decent photoactivity of the CdSe/SnSe photoanode is attributed to the desired type-II band alignment and very small band offset (0.08 eV) that exists across the interface, which promotes the efficient separation of photogenerated electron-hole pairs confirmed by cyclic voltammetry measurements and is corroborated by first-principles density functional theory calculations. These findings should open new avenues for the design and development of advanced next-generation tin selenide-based heterostructures for efficient PEC water-splitting applications.
引用
收藏
页码:1986 / 1999
页数:14
相关论文
共 50 条
  • [31] Sn-Doped Hematite Nanostructures for Photoelectrochemical Water Splitting
    Ling, Yichuan
    Wang, Gongming
    Wheeler, Damon A.
    Zhang, Jin Z.
    Li, Yat
    NANO LETTERS, 2011, 11 (05) : 2119 - 2125
  • [32] Neodymium (Nd) based oxide perovskite nanostructures for photocatalytic and photoelectrochemical water splitting functions
    Ilanchezhiyan, P.
    Kumar, G. Mohan
    Siva, C.
    Cho, H. D.
    Lee, D. J.
    Reddy, N. Lakshmana
    Ramu, A. G.
    Kang, T. W.
    Kim, D. Y.
    ENVIRONMENTAL RESEARCH, 2021, 197
  • [33] Emerging Surface, Bulk, and Interface Engineering Strategies on BiVO4 for Photoelectrochemical Water Splitting
    Gaikwad, Mayur A.
    Suryawanshi, Umesh P.
    Ghorpade, Uma V.
    Jang, Jun Sung
    Suryawanshi, Mahesh P.
    Kim, Jin Hyeok
    SMALL, 2022, 18 (10)
  • [34] Enhanced photoelectrochemical water splitting using zinc selenide/graphitic carbon nitride type-II heterojunction interface
    Sitara, Effat
    Nasir, Habib
    Mumtaz, Asad
    Ehsan, Muhammad Fahad
    Sohail, Manzar
    Iram, Sadia
    Bukhari, Syeda Aqsa Batool
    Ullah, Sharif
    Akhtar, Tehmina
    Iqbal, Azhar
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (50) : 25424 - 25435
  • [35] Enhanced photoelectrochemical water splitting using zinc selenide/graphitic carbon nitride type-II heterojunction interface
    Sitara E.
    Nasir H.
    Mumtaz A.
    Ehsan M.F.
    Sohail M.
    Iram S.
    Bukhari S.A.B.
    Ullah S.
    Akhtar T.
    Iqbal A.
    International Journal of Hydrogen Energy, 2021, 46 (50): : 25424 - 25435
  • [36] Investigating the Role of Substrate Tin Diffusion on Hematite Based Photoelectrochemical Water Splitting System
    Natarajan, Kaushik
    Bhatt, Parth
    Yadav, Pankaj
    Pandey, Kavita
    Tripathi, Brijesh
    Kumar, Manoj
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2018, 18 (03) : 1856 - 1863
  • [37] Tin disulfide based ternary composites for visible light driven photoelectrochemical water splitting
    Pulipaka, Supriya
    Koushik, A. K. S.
    Boni, Nikhila
    Deepa, Melepurath
    Meduri, Praveen
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (23) : 11584 - 11592
  • [38] Engineering tantalum nitride for efficient photoelectrochemical water splitting
    Zhang, Beibei
    Fan, Zeyu
    Li, Yanbo
    SCIENCE CHINA-CHEMISTRY, 2024, 67 (07) : 2171 - 2180
  • [39] Engineering tantalum nitride for efficient photoelectrochemical water splitting
    Beibei Zhang
    Zeyu Fan
    Yanbo Li
    Science China(Chemistry), 2024, (07) : 2171 - 2180
  • [40] PHOTOELECTROCHEMICAL WATER SPLITTING A new use for bandgap engineering
    Bao, Jiming
    NATURE NANOTECHNOLOGY, 2015, 10 (01)