Facile preparation of durable superhydrophobic DTMS@HKUST-1 wood membrane for continuous oil-water separation in harsh conditions

被引:9
|
作者
Zhang, Xupeng [1 ]
Li, Kaiqian [2 ]
Li, Xianghong [1 ]
Guo, Longxin [2 ]
Deng, Shuduan [2 ]
Xu, Zhiping [2 ]
Zhu, Gang [1 ,2 ]
机构
[1] Southwest Forestry Univ, Int Joint Res Ctr Biomass Mat, Kunming 650224, Peoples R China
[2] Southwest Forestry Univ, Sch Mat & Chem Engn, Kunming 650224, Peoples R China
关键词
Metal-organic frameworks; Wood membrane; Superhydrophobic; Surface stability; Continuous oil-water separation; OIL/WATER; HKUST-1; FABRICATION; FLOTATION;
D O I
10.1016/j.surfin.2023.103778
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Manufacturing durable wood membranes that demonstrate both high efficiency and ultra-high flux for contin-uous oil-water separation utilizing scalable and cost-effective processes remains a serious challenge. In this study, a facile two-step approach is employed to prepare a novel superhydrophobic/oleophilic wood-based MOF (metal-organic framework) membrane. This method involves in-situ anchoring of the octahedral Cu-HKUST-1 (copper benzene-1,3,5-tricarboxylate) onto the wood sponge (WS), which inherently features internal micro-channels. The structure is then modified using the eco-friendly hydrophobic long-chain coupling agent dodecyl-trimethoxysilane (DTMS). Due to its unique micro/nanoscale rough surface morphology and low surface energy, the functional wood membrane (DTMS/HKUST-1@WS) exhibited a high contact angle of 162.98 +/- 1.10 degrees for water and was able to effectively separate various immiscible oil/water mixtures. Notably, the DTMS/HKUST-1@WS membrane can be integrated into a pump drive system, serving as an advanced filter element for the sustained and efficient oil-water constituents. Results showed that this membrane possesses attractive perme-ability toward CCl4 (56689.34 L & sdot;m-2 & sdot;h-1) and toluene (47241.12 L & sdot;m-2 & sdot;h-1), achieving separation efficiencies over 99.0%. Furthermore, this novel membrane exhibits remarkable resistance to physical damage, high/low temperatures, and corrosive solutions, thereby showcasing stable superhydrophobic and superoleophilic interfaces suitable for oily wastewater treatment in harsh environments. Thus, this work offers an innovative approach for designing functional wood-based MOF membranes to achieve highly efficient continuous oil-water separation.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Functionally Integrated Device with Robust and Durable Superhydrophobic Surface for Efficient, Continuous, and Recyclable Oil-Water Separation
    Zhou, Lei
    Zhao, Xinyu
    Ju, Guannan
    ADVANCED MATERIALS INTERFACES, 2022, 9 (09):
  • [32] Femtosecond laser engineered eggshell membrane for durable oil/water separation under harsh conditions
    Xia, Lei
    Chen, Faze
    Chao, Jiaqi
    Zhang, Du
    Tian, Yanling
    Zhang, Dawei
    JOURNAL OF MEMBRANE SCIENCE, 2023, 668
  • [33] Superhydrophobic DTMS/rGO-nanocomposites modified polyurethane sponge for efficient oil-water separation
    Li, Ji
    Lu, Junfeng
    Zhang, Tian C.
    Yuan, Shaojun
    SURFACE ENGINEERING, 2023, 39 (03) : 349 - 360
  • [34] Preparation of magnetic superhydrophobic melamine sponge for oil-water separation
    Li, Zeng-Tian
    He, Fu-An
    Lin, Bo
    POWDER TECHNOLOGY, 2019, 345 : 571 - 579
  • [35] Preparation of superhydrophobic coated cotton fabrics for oil-water separation
    Li W.
    Zhang C.
    Liu J.
    Fangzhi Xuebao/Journal of Textile Research, 2021, 42 (08): : 109 - 114
  • [36] A facile method to fabricate the superhydrophobic magnetic sponge for oil-water separation
    Liu, Lei
    Lei, Jinglei
    Li, Lingjie
    Zhang, Rui
    Mi, Nanyang
    Chen, Herong
    Huang, Dong
    Li, Nianbing
    MATERIALS LETTERS, 2017, 195 : 66 - 70
  • [37] Preparation of superhydrophobic/oleophilic copper mesh for oil-water separation
    Cao, Huaijie
    Gu, Wenhan
    Fu, Jingyuan
    Liu, Ying
    Chen, Shougang
    APPLIED SURFACE SCIENCE, 2017, 412 : 599 - 605
  • [38] Facile Preparation of Durable Superhydrophobic Coating by Liquid-Phase Deposition for Versatile Oil/Water Separation
    Fan, Shumin
    Tang, Lulu
    Zhao, Xin
    Xu, Guangri
    Fan, Wenxiu
    COATINGS, 2023, 13 (05)
  • [39] Robust and durable superhydrophobic steel and copper meshes for separation of oil-water emulsions
    Tudu, Balraj Krishnan
    Kumar, Aditya
    PROGRESS IN ORGANIC COATINGS, 2019, 133 : 316 - 324
  • [40] Feasible Fabrication of a Durable Superhydrophobic Coating on Polyester Fabrics for Oil-Water Separation
    Li Yang
    Wang Jia-Dao
    Fan Li-Ning
    Chen Da-Rong
    ACTA PHYSICO-CHIMICA SINICA, 2016, 32 (04) : 990 - 996