MoSID: Modality-Specific Information Disentanglement from Multi-parametric MRI for Breast Tumor Segmentation

被引:1
|
作者
Zhang, Jiadong [1 ]
Chen, Qianqian [1 ,2 ]
Zhou, Luping [3 ]
Cui, Zhiming [1 ]
Gao, Fei [1 ]
Li, Zhenhui [4 ]
Feng, Qianjin [2 ]
Shen, Dinggang [1 ,5 ,6 ]
机构
[1] ShanghaiTech Univ, Sch Biomed Engn, Shanghai 201210, Peoples R China
[2] Southern Med Univ, Sch Biomed Engn, Guangzhou 510515, Guangdong, Peoples R China
[3] Univ Sydney, Sch Elect & Informat Engn, Sydney, NSW 2006, Australia
[4] Kunming Med Univ, Affiliated Hosp 3, Dept Radiol, Kunming 650118, Yunnan, Peoples R China
[5] Shanghai United Imaging Intelligence Co Ltd, Shanghai 200230, Peoples R China
[6] Shanghai Clin Res & Trial Ctr, Shanghai 200052, Peoples R China
基金
中国国家自然科学基金;
关键词
Breast tumor; Segmentation; Disentanglement;
D O I
10.1007/978-3-031-45350-2_8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Breast cancer is a major health issue, causing millions of deaths each year worldwide. Magnetic Resonance Imaging (MRI) is an effective tool for detecting and diagnosing breast tumors, with various MRI sequences providing comprehensive information on tumor morphology. However, existing methods for segmenting tumors from multiparametric MRI have limitations, including the lack of considering intermodality relationships and exploring task-informative modalities. To address these limitations, we propose the Modality-Specific Information Disentanglement (MoSID) framework, which extracts both intra- and inter-modality attention maps as prior knowledge to guide tumor segmentation from multi-parametric MRI. This is achieved by disentangling modality-specific information that provides complementary clues to the segmentation task and generating modality-specific attention maps in a synthesis manner. The modality-specific attention maps are further used to guide modality selection and inter-modality evaluation. Experiment results on a large breast dataset show that the MoSID achieves superior performance over other state-of-the-art multi-modality segmentation methods, and works reasonably well even with missing modalities.
引用
收藏
页码:94 / 104
页数:11
相关论文
共 50 条
  • [21] Stability of Multi-Parametric Prostate MRI Radiomic Features to Variations in Segmentation
    Seetha, Sithin Thulasi
    Garanzini, Enrico
    Tenconi, Chiara
    Marenghi, Cristina
    Avuzzi, Barbara
    Catanzaro, Mario
    Stagni, Silvia
    Villa, Sergio
    Chiorda, Barbara Noris
    Badenchini, Fabio
    Bertocchi, Elena
    Sanduleanu, Sebastian
    Pignoli, Emanuele
    Procopio, Giuseppe
    Valdagni, Riccardo
    Rancati, Tiziana
    Nicolai, Nicola
    Messina, Antonella
    JOURNAL OF PERSONALIZED MEDICINE, 2023, 13 (07):
  • [22] Evaluating Scale Attention Network for Automatic Brain Tumor Segmentation with Large Multi-parametric MRI Database
    Yuan, Yading
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2021, PT II, 2022, 12963 : 42 - 53
  • [23] Tumor-stromal ratio (TSR) of invasive breast cancer: correlation with multi-parametric breast MRI findings
    Yamaguchi, Ken
    Hara, Yukiko
    Kitano, Isao
    Hamamoto, Takahiro
    Kiyomatsu, Kazumitsu
    Yamasaki, Fumio
    Egashira, Ryoko
    Nakazono, Takahiko
    Irie, Hiroyuki
    BRITISH JOURNAL OF RADIOLOGY, 2019, 92 (1097):
  • [24] Deep Learning Model Integrating Dilated Convolution and Deep Supervision for Brain Tumor Segmentation in Multi-parametric MRI
    Zhou, Tongxue
    Ruan, Su
    Hu, Haigen
    Canu, Stephane
    MACHINE LEARNING IN MEDICAL IMAGING (MLMI 2019), 2019, 11861 : 574 - 582
  • [25] Ensemble CNN Networks for GBM Tumors Segmentation Using Multi-parametric MRI
    Zeineldin, Ramy A.
    Karar, Mohamed E.
    Mathis-Ullrich, Franziska
    Burgert, Oliver
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2021, PT I, 2022, 12962 : 473 - 483
  • [26] Particle swarm optimization based segmentation of Cancer in multi-parametric prostate MRI
    Garg, Gaurav
    Juneja, Mamta
    MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (20) : 30557 - 30580
  • [27] Multi-Atlas and Learning Based Segmentation of Head and Neck Normal Structures From Multi-Parametric MRI
    Veeraraghavan, H.
    Tyagi, N.
    Hunt, M.
    Lee, N.
    Deasy, J.
    MEDICAL PHYSICS, 2015, 42 (06) : 3541 - 3541
  • [28] Particle swarm optimization based segmentation of Cancer in multi-parametric prostate MRI
    Gaurav Garg
    Mamta Juneja
    Multimedia Tools and Applications, 2021, 80 : 30557 - 30580
  • [29] Multi-parametric MRI lesion heterogeneity biomarkers for breast cancer diagnosis
    Tsarouchi, Marialena, I
    Vlachopoulos, Georgios F.
    Karahaliou, Anna N.
    Vassiou, Katerina G.
    Costaridou, Lena, I
    PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2020, 80 : 101 - 110
  • [30] Explainable AI for CNN-based prostate tumor segmentation in multi-parametric MRI correlated to whole mount histopathology
    Deepa Darshini Gunashekar
    Lars Bielak
    Leonard Hägele
    Benedict Oerther
    Matthias Benndorf
    Anca-L. Grosu
    Thomas Brox
    Constantinos Zamboglou
    Michael Bock
    Radiation Oncology, 17