MoSID: Modality-Specific Information Disentanglement from Multi-parametric MRI for Breast Tumor Segmentation

被引:1
|
作者
Zhang, Jiadong [1 ]
Chen, Qianqian [1 ,2 ]
Zhou, Luping [3 ]
Cui, Zhiming [1 ]
Gao, Fei [1 ]
Li, Zhenhui [4 ]
Feng, Qianjin [2 ]
Shen, Dinggang [1 ,5 ,6 ]
机构
[1] ShanghaiTech Univ, Sch Biomed Engn, Shanghai 201210, Peoples R China
[2] Southern Med Univ, Sch Biomed Engn, Guangzhou 510515, Guangdong, Peoples R China
[3] Univ Sydney, Sch Elect & Informat Engn, Sydney, NSW 2006, Australia
[4] Kunming Med Univ, Affiliated Hosp 3, Dept Radiol, Kunming 650118, Yunnan, Peoples R China
[5] Shanghai United Imaging Intelligence Co Ltd, Shanghai 200230, Peoples R China
[6] Shanghai Clin Res & Trial Ctr, Shanghai 200052, Peoples R China
基金
中国国家自然科学基金;
关键词
Breast tumor; Segmentation; Disentanglement;
D O I
10.1007/978-3-031-45350-2_8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Breast cancer is a major health issue, causing millions of deaths each year worldwide. Magnetic Resonance Imaging (MRI) is an effective tool for detecting and diagnosing breast tumors, with various MRI sequences providing comprehensive information on tumor morphology. However, existing methods for segmenting tumors from multiparametric MRI have limitations, including the lack of considering intermodality relationships and exploring task-informative modalities. To address these limitations, we propose the Modality-Specific Information Disentanglement (MoSID) framework, which extracts both intra- and inter-modality attention maps as prior knowledge to guide tumor segmentation from multi-parametric MRI. This is achieved by disentangling modality-specific information that provides complementary clues to the segmentation task and generating modality-specific attention maps in a synthesis manner. The modality-specific attention maps are further used to guide modality selection and inter-modality evaluation. Experiment results on a large breast dataset show that the MoSID achieves superior performance over other state-of-the-art multi-modality segmentation methods, and works reasonably well even with missing modalities.
引用
收藏
页码:94 / 104
页数:11
相关论文
共 50 条
  • [1] Modality-Specific Information Disentanglement From Multi-Parametric MRI for Breast Tumor Segmentation and Computer-Aided Diagnosis
    Chen, Qianqian
    Zhang, Jiadong
    Meng, Runqi
    Zhou, Lei
    Li, Zhenhui
    Feng, Qianjin
    Shen, Dinggang
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2024, 43 (05) : 1958 - 1971
  • [2] CONFIDENCE GUIDED ENHANCING BRAIN TUMOR SEGMENTATION IN MULTI-PARAMETRIC MRI
    Reddy, Kishore K.
    Solmaz, Berkan
    Yan, Pingkun
    Avgeropoulos, Nicholas G.
    Rippe, David J.
    Shah, Mubarak
    2012 9TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2012, : 366 - 369
  • [3] Automatic outer and inner breast tissue segmentation using multi-parametric MRI images of breast tumor patients
    Snekha, Thakran
    Subhajit, Chatterjee
    Singhal, Meenakshi
    Gupta, Rakesh Kumar
    Singh, Anup
    PLOS ONE, 2018, 13 (01):
  • [4] Comparison of unsupervised classification methods for brain tumor segmentation using multi-parametric MRI
    Sauwen, N.
    Acou, M.
    Van Cauter, S.
    Sima, D. M.
    Veraart, J.
    Maes, F.
    Himmelreich, U.
    Achten, E.
    Van Huffel, S.
    NEUROIMAGE-CLINICAL, 2016, 12 : 753 - 764
  • [5] Deep-Learning Based Rectal Tumor Localization and Segmentation On Multi-Parametric MRI
    Zhang, Y.
    Hu, S.
    Shi, L.
    Sun, X.
    Yue, N.
    Nie, K.
    MEDICAL PHYSICS, 2022, 49 (06) : E482 - E482
  • [6] A potential field segmentation based method for tumor segmentation on multi-parametric MRI of glioma cancer patients
    Sun, Ranran
    Wang, Keqiang
    Guo, Lu
    Yang, Chengwen
    Chen, Jie
    Ti, Yalin
    Sa, Yu
    BMC MEDICAL IMAGING, 2019, 19 (1)
  • [7] Deep learning tumor segmentation for target delineation in glioblastoma using multi-parametric MRI
    Hannisdal, M.
    Goplen, D.
    Alam, S.
    Haasz, J.
    Oltedal, L.
    Rahman, M. A.
    Rygh, C. B.
    Lie, S. A.
    Lundervold, A.
    Chekenya, M.
    RADIOTHERAPY AND ONCOLOGY, 2023, 182 : S251 - S252
  • [8] A potential field segmentation based method for tumor segmentation on multi-parametric MRI of glioma cancer patients
    Ranran Sun
    Keqiang Wang
    Lu Guo
    Chengwen Yang
    Jie Chen
    Yalin Ti
    Yu Sa
    BMC Medical Imaging, 19
  • [9] Combined PET/MRI: Multi-modality Multi-parametric Imaging Is Here
    Bailey, D. L.
    Pichler, B. J.
    Gueckel, B.
    Barthel, H.
    Beer, A. J.
    Bremerich, J.
    Czernin, J.
    Drzezga, A.
    Franzius, C.
    Goh, V.
    Hartenbach, M.
    Iida, H.
    Kjaer, A.
    la Fougere, C.
    Ladefoged, C. N.
    Law, I.
    Nikolaou, K.
    Quick, H. H.
    Sabri, O.
    Schaefer, J.
    Schaefers, M.
    Wehrl, H. F.
    Beyer, T.
    MOLECULAR IMAGING AND BIOLOGY, 2015, 17 (05) : 595 - 608
  • [10] Modality-Specific Segmentation Network for Lung Tumor Segmentation in PET-CT Images
    Xiang, Dehui
    Zhang, Bin
    Lu, Yuxuan
    Deng, Shengming
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2023, 27 (03) : 1237 - 1248