Highly stretchable PTFE particle enhanced triboelectric nanogenerator for droplet energy harvestings

被引:14
|
作者
Yang, Changjun [1 ]
Wang, Yamei [1 ]
Wang, Yan [1 ]
Zhao, Zehui [1 ]
Zhang, Liwen [1 ]
Chen, Huawei [1 ,2 ]
机构
[1] Beihang Univ, Beijing 100191, Peoples R China
[2] Beihang Univ, Adv Innovat Ctr Biomed Engn, Beijing 100191, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Triboelectric nanogenerator; Hydrophobicity; Stretchability; High transfer charge density; Droplet energy harvesting; RENEWABLE ENERGY;
D O I
10.1016/j.nanoen.2023.109000
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Liquid-solid based triboelectric nanogenerator (TENG) can be widely utilized for droplet energy harvesting, in which the hydrophobicity of triboelectric layer is crucial for output enhancement. However, poor mechanical properties of hydrophobic triboelectric layers prepared in classic methods greatly limit the TENG's application. Here, a stretchable hydrophobic triboelectric nanogenerator (SH-TENG) with excellent output, and durability is devised by strongly bonding PTFE micro particles on a flexible substrate even under extreme stretching or abrasion. By synergistic enhancement of the PTFE particles on both contact-separation and charge-transfer between droplet and triboelectric layer, the transfer charge density of SH-TENG is increased to similar to 4.74 x 10(-3) C/ m(2)center dot L, along with the open circuit voltage (V-OC) and short circuit current (I-SC) over 7 times and 6 times higher than TENG without PTFE modified, respectively. Moreover, under a stretching rate of 500%, the SH-TENG shows less 20% decline of its output performance to guarantee applications in flexible electronics. A miniature watch can be sufficiently powered by the SH-TENGs with total area of 0.016 m(2) under the simulated raindrop flow rate of 50 mL/min. With such outstanding performance and environmental adaptability, the SH-TENG can be integrated with various objects to collect droplet energy and supply electronic devices.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Bioinspired stretchable triboelectric nanogenerator as energy-harvesting skin for self-powered electronics
    Wang, Xiaofeng
    Yin, Yajiang
    Yi, Fang
    Dai, Keren
    Niu, Simiao
    Han, Yingzhou
    Zhang, Yue
    You, Zheng
    NANO ENERGY, 2017, 39 : 429 - 436
  • [32] A Stretchable, Self-Healable Triboelectric Nanogenerator as Electronic Skin for Energy Harvesting and Tactile Sensing
    Han, Xi
    Jiang, Dongjie
    Qu, Xuecheng
    Bai, Yuan
    Cao, Yu
    Luo, Ruizeng
    Li, Zhou
    MATERIALS, 2021, 14 (07)
  • [33] A droplet-based triboelectric-piezoelectric hybridized nanogenerator for scavenging mechanical energy
    Zhang, Maoyi
    Bao, Chengmin
    Hu, Chaosheng
    Huang, YongAn
    Yang, Ya
    Su, Yewang
    NANO ENERGY, 2022, 104
  • [34] Piezoelectric-enhanced triboelectric nanogenerator fabric for biomechanical energy harvesting
    He, Jian
    Qian, Shuo
    Niu, Xushi
    Zhang, Ning
    Qian, Jichao
    Hou, Xiaojuan
    Mu, Jiliang
    Geng, Wenping
    Chou, Xiujian
    NANO ENERGY, 2019, 64
  • [35] A Spherical Hybrid Triboelectric Nanogenerator for Enhanced Water Wave Energy Harvesting
    Lee, Kwangseok
    Lee, Jeong-won
    Kim, Kihwan
    Yoo, Donghyeon
    Kim, Dong Sung
    Hwang, Woonbong
    Song, Insang
    Sim, Jae-Yoon
    MICROMACHINES, 2018, 9 (11):
  • [36] Synchronous Pre-biasing of Triboelectric Nanogenerator for Enhanced Energy Extraction
    Pathak, Madhav
    Kumar, Ratnesh
    IEEE TRANSACTIONS ON POWER ELECTRONICS, 2022, 37 (10) : 11552 - 11566
  • [37] Triboelectric Nanogenerator Enhanced Schottky Nanowire Sensor for Highly Sensitive Ethanol Detection
    Meng, Jianping
    Li, Hu
    Zhao, Luming
    Lu, Junfeng
    Pan, Caofeng
    Zhang, Yan
    Li, Zhou
    NANO LETTERS, 2020, 20 (07) : 4968 - 4974
  • [38] Hybrid piezo/triboelectric nanogenerator for highly efficient and stable rotation energy harvesting
    Zhao, Chunlin
    Zhang, Qian
    Zhang, Wenliang
    Du, Xinyu
    Zhang, Yang
    Gong, Shaobo
    Ren, Kailiang
    Sun, Qijun
    Wang, Zhong Lin
    NANO ENERGY, 2019, 57 : 440 - 449
  • [39] Stretchable Woven Fabric-Based Triboelectric Nanogenerator for Energy Harvesting and Self-Powered Sensing
    Chen, Lijun
    Wang, Tairan
    Shen, Yunchu
    Wang, Fumei
    Chen, Chaoyu
    NANOMATERIALS, 2023, 13 (05)
  • [40] A Stretchable Yarn Embedded Triboelectric Nanogenerator as Electronic Skin for Biomechanical Energy Harvesting and Multifunctional Pressure Sensing
    Dong, Kai
    Wu, Zhiyi
    Deng, Jianan
    Wang, Aurelia C.
    Zou, Haiyang
    Chen, Chaoyu
    Hu, Dongmei
    Gu, Bohong
    Sun, Baozhong
    Wang, Zhong Lin
    ADVANCED MATERIALS, 2018, 30 (43)