Surrogate-assisted evolutionary algorithm with hierarchical surrogate technique and adaptive infill strategy

被引:10
|
作者
Chen, Hao [1 ,2 ,3 ]
Li, Weikun [2 ,3 ]
Cui, Weicheng [2 ,3 ]
机构
[1] Zhejiang Univ, Zhejiang Univ Westlake Univ Joint Training, Hangzhou 310024, Zhejiang, Peoples R China
[2] Westlake Univ, Sch Engn, Key Lab Coastal Environm & Resources Zhejiang Prov, 18 Shilongshan Rd, Hangzhou 310024, Zhejiang, Peoples R China
[3] Inst Adv Technol, Westlake Inst Adv Study, 18 Shilongshan Rd, Hangzhou 310024, Zhejiang, Peoples R China
关键词
Surrogate-assisted optimization; High-dimensional model representation; Infill sampling strategy; Surrogate modeling; PARTICLE SWARM OPTIMIZATION; HDMR; ENSEMBLE; MODELS;
D O I
10.1016/j.eswa.2023.120826
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Fitness functions of real-world optimization problems often need to be analyzed by expensive experiments or numerical simulations. Integrating these expensive simulations or experiments directly into optimization algorithms would result in substantial computational costs. Surrogate-assisted evolutionary algorithms (SAEAs) have attracted massive attention recently due to their high efficiency and applicability in solving real world optimization problems. As the dimension of the optimization problem increases, the computational cost of constructing surrogates increases, and the surrogate model's prediction accuracy may be severely degraded. High-dimensional model representation (HDMR) is a promising technique to partition a high dimensional function into low-dimensional component functions. However, HDMR's hierarchical structure limits its applicability in online SAEAs. To address these problems, this paper develops a surrogate-assisted evolutionary algorithm with hierarchical surrogate technique and adaptive infill strategy (SAEA-HAS). In this work, we propose a novel hierarchical surrogate technique, in which a composite surrogate model is constructed by the first-order HDMR model and an error value-based surrogate model, then, using the internal contrastive analysis method, a hierarchical surrogate model (HSM) combining the composite surrogate with the fitness value-based surrogate is established. In addition, an adaptive infill strategy is developed to balance the exploration and exploitation of the surrogate-assisted evolutionary search. Various test functions and an antenna optimization problem are employed to compare SAEA-HAS with several well-known SAEAs. The experimental results validate the effectiveness of SAEA-HAS.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] Algorithm Portfolio for Individual-based Surrogate-Assisted Evolutionary Algorithms
    Tong, Hao
    Liu, Jialin
    Yao, Xin
    PROCEEDINGS OF THE 2019 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE (GECCO'19), 2019, : 943 - 950
  • [32] Performance Analysis of a (1+1) Surrogate-Assisted Evolutionary Algorithm
    Chen, Yu
    Zou, Xiufen
    INTELLIGENT COMPUTING THEORY, 2014, 8588 : 32 - 40
  • [33] A surrogate-assisted bi-swarm evolutionary algorithm for expensive optimization
    Nengxian Liu
    Jeng-Shyang Pan
    Shu-Chuan Chu
    Taotao Lai
    Applied Intelligence, 2023, 53 : 12448 - 12471
  • [34] A dynamic surrogate-assisted evolutionary algorithm framework for expensive structural optimization
    Yu, Mingyuan
    Li, Xia
    Liang, Jing
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2020, 61 (02) : 711 - 729
  • [35] A dynamic surrogate-assisted evolutionary algorithm framework for expensive structural optimization
    Mingyuan Yu
    Xia Li
    Jing Liang
    Structural and Multidisciplinary Optimization, 2020, 61 : 711 - 729
  • [36] HAS-EA: a fast parallel surrogate-assisted evolutionary algorithm
    Li, Yixian
    Zhong, Jinghui
    MEMETIC COMPUTING, 2023, 15 (01) : 103 - 115
  • [37] A comparison of quality measures for model selection in surrogate-assisted evolutionary algorithm
    Yu, Haibo
    Tan, Ying
    Sun, Chaoli
    Zeng, Jianchao
    SOFT COMPUTING, 2019, 23 (23) : 12417 - 12436
  • [38] Hierarchical Surrogate-Assisted Evolutionary Multi-Scenario Airfoil Shape Optimization
    Wang, Handing
    Doherty, John
    Jin, Yaochu
    2018 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2018, : 2592 - 2599
  • [39] Surrogate-assisted global transfer optimization based on adaptive sampling strategy
    Chen, Weixi
    Dong, Huachao
    Wang, Peng
    Wang, Xinjing
    ADVANCED ENGINEERING INFORMATICS, 2023, 56
  • [40] A domain-transformed surrogate-assisted differential evolutionary algorithm for hyperparameter optimisation of satellite handover strategy
    Yang, Zhe
    Deng, Libao
    Li, Chunlei
    Qin, Yifan
    Zhang, Lili
    INFORMATION SCIENCES, 2025, 700