A Note on Stress-Energy Tensor and Variational Principle for Null Strings

被引:0
|
作者
Fursaev, D. V. [1 ,2 ]
Davydov, E. A. [1 ,2 ]
Tainov, V. A. [1 ,2 ]
机构
[1] Joint Inst Nucl Res, Dubna, Russia
[2] Dubna State Univ, Dubna, Russia
基金
俄罗斯科学基金会;
关键词
D O I
10.1134/S1547477123030305
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
A straightforward application of the variational principle to null strings meets difficulties since string's world-sheets are degenerate. It is known that the variational principle in this case can be formulated with the help of two-vector density on the string world-sheet which plays a role of Lagrange multipliers. It is shown that recently suggested stress-energy tensor of null strings can be derived by variation over the background metric of the action used to describe tensionless limit in the string theory. One of the Lagrange multipliers is related to the energy of the null string.
引用
收藏
页码:528 / 530
页数:3
相关论文
共 50 条
  • [1] A Note on Stress-Energy Tensor and Variational Principle for Null Strings
    D. V. Fursaev
    E. A. Davydov
    V. A. Tainov
    Physics of Particles and Nuclei Letters, 2023, 20 : 528 - 530
  • [2] Twistor variational principle for null strings
    Ilyenko, K
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2001, 102 : 83 - 86
  • [3] On the gravitoelectromagnetic stress-energy tensor
    Mashhoon, B
    McClune, JC
    Quevedo, H
    CLASSICAL AND QUANTUM GRAVITY, 1999, 16 (04) : 1137 - 1148
  • [4] A characterization of the electromagnetic stress-energy tensor
    Navarro, J.
    Sancho, J. B.
    PHYSICS AND MATHEMATICS OF GRAVITATION, 2009, 1122 : 360 - 363
  • [5] On the formulations of the electromagnetic stress-energy tensor
    Anghinoni, B.
    Flizikowski, G. A. S.
    Malacarne, L. C.
    Partanen, M.
    Bialkowski, S. E.
    Astrath, N. G. C.
    ANNALS OF PHYSICS, 2022, 443
  • [6] The stress-energy tensor for polyharmonic maps
    Branding, Volker
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 190
  • [7] A Variation Problem for Stress-Energy Tensor
    Han, Yingbo
    RESULTS IN MATHEMATICS, 2019, 74 (04)
  • [8] The stress-energy tensor for biharmonic maps
    E. Loubeau
    S. Montaldo
    C. Oniciuc
    Mathematische Zeitschrift, 2008, 259 : 503 - 524
  • [9] The stress-energy tensor for biharmonic maps
    Loubeau, E.
    Montaldo, S.
    Oniciuc, C.
    MATHEMATISCHE ZEITSCHRIFT, 2008, 259 (03) : 503 - 524
  • [10] Which part of the stress-energy tensor gravitates?
    Yargic, Yigit
    Sberna, Laura
    Kempf, Achim
    PHYSICAL REVIEW D, 2020, 101 (04)