A Variation Problem for Stress-Energy Tensor

被引:1
|
作者
Han, Yingbo [1 ]
机构
[1] Xinyang Normal Univ, Sch Math & Stat, Xinyang 464000, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
Stress-energy tensor; Liouville type results; variation formula; F-STATIONARY MAPS; STABILITY;
D O I
10.1007/s00025-019-1090-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce a functional Phi(S) related to the stress-energy tensor of a smooth map between two Riemannian manifolds. We derive the first variation formula and the second variation formula of Phi(S). We also use the stress-energy tensor to obtain some Liouville type results for some special maps. Finally, we obtain that the maps from or into the compact convex hypersurfaces M-m (m >= 5) of Rm+1 which are stable stress-energy stationary maps and satisfy the inequality 3 lambda(m) < Sigma(m-1)(i=1) lambda(i) must be constant.
引用
收藏
页数:26
相关论文
共 50 条
  • [1] On the gravitoelectromagnetic stress-energy tensor
    Mashhoon, B
    McClune, JC
    Quevedo, H
    CLASSICAL AND QUANTUM GRAVITY, 1999, 16 (04) : 1137 - 1148
  • [2] A Variation Problem for Stress–Energy Tensor
    Yingbo Han
    Results in Mathematics, 2019, 74
  • [3] A characterization of the electromagnetic stress-energy tensor
    Navarro, J.
    Sancho, J. B.
    PHYSICS AND MATHEMATICS OF GRAVITATION, 2009, 1122 : 360 - 363
  • [4] On the formulations of the electromagnetic stress-energy tensor
    Anghinoni, B.
    Flizikowski, G. A. S.
    Malacarne, L. C.
    Partanen, M.
    Bialkowski, S. E.
    Astrath, N. G. C.
    ANNALS OF PHYSICS, 2022, 443
  • [5] The stress-energy tensor for polyharmonic maps
    Branding, Volker
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 190
  • [6] The stress-energy tensor for biharmonic maps
    E. Loubeau
    S. Montaldo
    C. Oniciuc
    Mathematische Zeitschrift, 2008, 259 : 503 - 524
  • [7] The stress-energy tensor for biharmonic maps
    Loubeau, E.
    Montaldo, S.
    Oniciuc, C.
    MATHEMATISCHE ZEITSCHRIFT, 2008, 259 (03) : 503 - 524
  • [8] Which part of the stress-energy tensor gravitates?
    Yargic, Yigit
    Sberna, Laura
    Kempf, Achim
    PHYSICAL REVIEW D, 2020, 101 (04)
  • [9] Influence of symmetrization procedure on stress-energy tensor
    Arkhipov, V. V.
    Orymbay, T. M.
    BULLETIN OF THE UNIVERSITY OF KARAGANDA-PHYSICS, 2015, 3 (79): : 68 - 73
  • [10] Conformal Loop Ensembles and the Stress-Energy Tensor
    Doyon, Benjamin
    LETTERS IN MATHEMATICAL PHYSICS, 2013, 103 (03) : 233 - 284