Environmental contamination with Clostridioides (Clostridium) difficile in Vietnam

被引:2
|
作者
Khun, Peng An [1 ]
Phi, Long Duc [2 ]
Bui, Huong Thi Thu [3 ]
Bui, Nguyen Thi [4 ]
Vu, Quyen Thi Huyen [4 ]
Trinh, Luong Duy [4 ]
Collins, Deirdre A. [5 ]
Riley, Thomas, V [1 ,5 ,6 ,7 ,8 ]
机构
[1] Univ Western Australia, Sch Biomed Sci, Nedlands, WA 6009, Australia
[2] Thai Binh Univ Med & Pharm, Thai Binh 410000, Vietnam
[3] Thai Binh Gen Hosp, Thai Binh 410000, Vietnam
[4] Ninh Binh Women & Childrens Hosp, Ninh Binh 430000, Vietnam
[5] Edith Cowan Univ, Sch Med & Hlth Sci, Joondalup, WA 6027, Australia
[6] Murdoch Univ, Med Mol & Forens Sci, Murdoch, WA 6150, Australia
[7] PathWest Lab Med, Dept Microbiol, Nedlands, WA 6009, Australia
[8] Univ Western Australia, Queen Elizabeth II Med Ctr, Sch Biomed Sci, Nedlands, WA 6009, Australia
基金
英国医学研究理事会;
关键词
Clostridioides (Clostridium) difficile; environment; animals; root vegetables; sources; reservoirs; Vietnam; HIGH PREVALENCE; INFECTION; EPIDEMIOLOGY; PIGS; HUMANS;
D O I
10.1093/jambio/lxad118
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Aims To investigate the prevalence, molecular type, and antimicrobial susceptibility of Clostridioides difficile in the environment in Vietnam, where little is known about C. difficile. Methods and results Samples of pig faeces, soils from pig farms, potatoes, and the hospital environment were cultured for C. difficile. Isolates were identified and typed by polymerase chain reaction (PCR) ribotyping. The overall prevalence of C. difficile contamination was 24.5% (68/278). Clostridioides difficile was detected mainly in soils from pig farms and hospital soils, with 70%-100% prevalence. Clostridioides difficile was isolated from 3.4% of pig faecal samples and 5% of potato surfaces. The four most prevalent ribotypes (RTs) were RTs 001, 009, 038, and QX574. All isolates were susceptible to metronidazole, fidaxomicin, vancomycin, and amoxicillin/clavulanate, while resistance to erythromycin, tetracycline, and moxifloxacin was common in toxigenic strains. Clostridioides difficile RTs 001A(+)B(+)CDT(-) and 038A(-)B(-)CDT(-) were predominantly multidrug resistant. Conclusions Environmental sources of C. difficile are important to consider in the epidemiology of C. difficile infection in Vietnam, however, contaminated soils are likely to be the most important source of C. difficile. This poses additional challenges to controlling infections in healthcare settings.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Clostridioides difficile contamination in a clinical microbiology laboratory?
    Reigadas, E.
    Vazquez-Cuesta, S.
    Onori, R.
    Villar-Gomara, L.
    Alcala, L.
    Marin, M.
    Martin, A.
    Munoz, P.
    Bouza, E.
    CLINICAL MICROBIOLOGY AND INFECTION, 2020, 26 (03) : 340 - 344
  • [22] Clostridium difficile and Clostridioides difficile: Two validly published and correct names
    Oren, Aharon
    Rupnik, Maja
    ANAEROBE, 2018, 52 : 125 - 126
  • [23] Fecal microbiota transplantation for the treatment of recurrent Clostridioides difficile (Clostridium difficile)
    Minkoff, Nathan Zev
    Aslam, Scheherzade
    Medina, Melissa
    Tanner-Smith, Emily E.
    Zackular, Joseph P.
    Acra, Sari
    Nicholson, Maribeth R.
    Imdad, Aamer
    COCHRANE DATABASE OF SYSTEMATIC REVIEWS, 2023, (04):
  • [24] The Impact of Infection Versus Colonization on Clostridioides difficile Environmental Contamination in Hospitalized Patients With Diarrhea
    Warren, Bobby G.
    Turner, Nicholas A.
    Addison, Rachel
    Nelson, Alicia
    Barrett, Aaron
    Addison, Bechtler
    Graves, Amanda
    Smith, Becky
    Lewis, Sarah S.
    Weber, David J.
    Sickbert-Bennett, Emily E.
    Anderson, Deverick J.
    OPEN FORUM INFECTIOUS DISEASES, 2022, 9 (04):
  • [25] Agricultural fertilization with poultry manure results in persistent environmental contamination with the pathogen Clostridioides difficile
    Frentrup, Martinique
    Thiel, Nadine
    Junker, Vera
    Behrens, Wiebke
    Munch, Steffen
    Siller, Paul
    Kabelitz, Tina
    Faust, Matthias
    Indra, Alexander
    Baumgartner, Stefanie
    Schepanski, Kerstin
    Amon, Thomas
    Roesler, Uwe
    Funk, Roger
    Nubel, Ulrich
    ENVIRONMENTAL MICROBIOLOGY, 2021, 23 (12) : 7591 - 7602
  • [26] Impact of Oral Metronidazole, Vancomycin, and Fidaxomicin on Host Shedding and Environmental Contamination With Clostridioides difficile
    Turner, Nicholas A.
    Warren, Bobby G.
    Gergen-Teague, Maria F.
    Addison, Rachel M.
    Addison, Bechtler
    Rutala, William A.
    Weber, David J.
    Sexton, Daniel J.
    Anderson, Deverick J.
    CLINICAL INFECTIOUS DISEASES, 2022, 74 (04) : 648 - 656
  • [27] Bacteriophages Contribute to Shaping Clostridioides (Clostridium) difficile Species
    Fortier, Louis-Charles
    FRONTIERS IN MICROBIOLOGY, 2018, 9
  • [28] Epidemiology of Clostridium (Clostridioides) difficile Infection in Southeast Asia
    Khun, Peng An
    Riley, Thomas V.
    AMERICAN JOURNAL OF TROPICAL MEDICINE AND HYGIENE, 2022, 107 (03): : 517 - 526
  • [29] Identification of large cryptic plasmids in Clostridioides (Clostridium) difficile
    Amy, Jacob
    Bulach, Dieter
    Knight, Daniel
    Riley, Tom
    Johanesen, Priscilla
    Lyras, Dena
    PLASMID, 2018, 96-97 : 25 - 38
  • [30] Comparison of qPCR versus culture for the detection and quantification of Clostridium difficile environmental contamination
    MacDougall, Laura K.
    Broukhanski, George
    Simor, Andrew
    Johnstone, Jennie
    Mubareka, Samira
    McGeer, Allison
    Daneman, Nick
    Garber, Gary
    Brown, Kevin A.
    PLOS ONE, 2018, 13 (08):