Bandwidth selection for nonparametric regression with errors-in-variables

被引:2
|
作者
Dong, Hao [1 ]
Otsu, Taisuke [2 ]
Taylor, Luke [3 ]
机构
[1] Southern Methodist Univ, Dept Econ, 3300 Dyer St, Dallas, TX 75275 USA
[2] London Sch Econ, Dept Econ, London, England
[3] Dept Econ & Business Econ, Aarhus, Denmark
关键词
Measurement error models; deconvolution; nonparametric regression; bandwidth selection; UNIFORM CONFIDENCE BANDS; BLOOD-PRESSURE; OPTIMAL RATES; DECONVOLUTION; HYPERTENSION; CONVERGENCE;
D O I
10.1080/07474938.2023.2191105
中图分类号
F [经济];
学科分类号
02 ;
摘要
We propose two novel bandwidth selection procedures for the nonparametric regression model with classical measurement error in the regressors. Each method evaluates the prediction errors of the regression using a second (density) deconvolution. The first approach uses a typical leave-one-out cross-validation criterion, while the second applies a bootstrap approach and the concept of out-of-bag prediction. We show the asymptotic validity of both procedures and compare them to the SIMEX method in a Monte Carlo study. As well as dramatically reducing computational cost, the methods proposed in this article lead to lower mean integrated squared error (MISE) compared to the current state-of-the-art.
引用
收藏
页码:393 / 419
页数:27
相关论文
共 50 条
  • [41] Aleatoric Uncertainty for Errors-in-Variables Models in Deep Regression
    Martin, J.
    Elster, C.
    NEURAL PROCESSING LETTERS, 2023, 55 (04) : 4799 - 4818
  • [42] Recommendations about estimating errors-in-variables regression in Stata
    Lockwood, J. R.
    McCaffrey, Daniel F.
    STATA JOURNAL, 2020, 20 (01): : 116 - 130
  • [43] ROBUST BIVARIATE ERRORS-IN-VARIABLES REGRESSION AND OUTLIER DETECTION
    FELDMANN, U
    EUROPEAN JOURNAL OF CLINICAL CHEMISTRY AND CLINICAL BIOCHEMISTRY, 1992, 30 (07): : 405 - 414
  • [44] On errors-in-variables in polynomial regression-Berkson case
    Huwang, L
    Huang, YHS
    STATISTICA SINICA, 2000, 10 (03) : 923 - 936
  • [45] Poisson regression models with errors-in-variables: implication and treatment
    Guo, JQ
    Li, T
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2002, 104 (02) : 391 - 401
  • [46] Composite quantile regression for linear errors-in-variables models
    Jiang, Rong
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2015, 44 (03): : 707 - 713
  • [47] GENERALIZED M-ESTIMATORS FOR ERRORS-IN-VARIABLES REGRESSION
    CHENG, CL
    VANNESS, JW
    ANNALS OF STATISTICS, 1992, 20 (01): : 385 - 397
  • [48] Kernel regression for errors-in-variables problems in the circular domain
    Marco Di Marzio
    Stefania Fensore
    Charles C. Taylor
    Statistical Methods & Applications, 2023, 32 : 1217 - 1237
  • [49] Nonparametric regression with errors-in-all-variables
    Ioannides, D. A.
    Alevizos, P. D.
    JOURNAL OF NONPARAMETRIC STATISTICS, 2007, 19 (6-8) : 231 - 240
  • [50] Kernel regression for errors-in-variables problems in the circular domain
    Di Marzio, Marco
    Fensore, Stefania
    Taylor, Charles C. C.
    STATISTICAL METHODS AND APPLICATIONS, 2023, 32 (04): : 1217 - 1237