Neural correlates of schizotypal traits: Findings from connectome-based predictive modelling

被引:0
|
作者
Chen, Tao [1 ,2 ,3 ,4 ]
Huang, Jia [1 ,2 ]
Cui, Ji-fang [5 ]
Li, Zhi [1 ,2 ]
Irish, Muireann [3 ,4 ]
Wang, Ya [1 ,2 ]
Chan, Raymond C. K. [1 ,2 ]
机构
[1] Inst Psychol, CAS Key Lab Mental Hlth, Neuropsychol & Appl Cognit Neurosci Lab, Beijing, Peoples R China
[2] Univ Chinese Acad Sci, Dept Psychol, Beijing, Peoples R China
[3] Univ Sydney, Brain & Mind Ctr, Sydney, Australia
[4] Univ Sydney, Sch Psychol, Sydney, Australia
[5] Natl Inst Educ Sci, Inst Educ Informat & Stat, Beijing, Peoples R China
基金
美国国家科学基金会; 澳大利亚研究理事会;
关键词
Schizotypal trait; Connectome-based predictive modelling (CPM); Machine learning; Resting-state functional connectivity;
D O I
10.1016/j.ajp.2022.103430
中图分类号
R749 [精神病学];
学科分类号
100205 ;
摘要
Schizotypal traits can be conceptualized as a phenotype for schizophrenia spectrum disorders. As such, a better understanding of schizotypal traits could potentially improve early identification and treatment of schizophrenia. We used connectome-based predictive modelling (CPM) based on whole-brain resting-state functional connec-tivity to predict schizotypal traits in 82 healthy participants. Results showed that only the negative network could reliably predict an individual's schizotypal traits (r = 0.29). The 10 nodes with the highest edges in the negative network were those known to play a key role in sensation and perception, cognitive control as well as motor control. Our findings suggest that CPM might be a promising approach to improve early identification and prevention of schizophrenia from a spectrum perspective.
引用
收藏
页数:3
相关论文
共 50 条
  • [1] Connectome-based predictive modelling of smoking severity in smokers
    Lin, Xiao
    Zhu, Ximei
    Zhou, Weiran
    Zhang, Zhibo
    Li, Peng
    Dong, Guangheng
    Meng, Shiqiu
    Deng, Jiahui
    Lu, Lin
    ADDICTION BIOLOGY, 2022, 27 (06)
  • [2] Modelling the impact of structural directionality on connectome-based models of neural activity
    Padmore, Amelia
    Nelson, Martin R.
    Chuzhanova, Nadia
    Crofts, Jonathan J.
    JOURNAL OF COMPLEX NETWORKS, 2020, 8 (04)
  • [3] Connectome-based predictive modeling of trait forgiveness
    Li, Jingyu
    Qiu, Jiang
    Li, Haijiang
    SOCIAL COGNITIVE AND AFFECTIVE NEUROSCIENCE, 2023, 18 (01)
  • [4] Connectome-based predictive modelling of ageing, overall cognitive functioning and memory performance
    Gu, Yi
    Guo, Lianghu
    Cai, Xinyi
    Yang, Qing
    Sun, Jian
    Li, Yufei
    Zhu, Jiayu
    Zhang, Weijun
    Huang, Peiyu
    Jiang, Yi
    Bo, Bin
    Li, Yao
    Zhang, Yaoyu
    Zhang, Minming
    Wu, Jinsong
    Shi, Hongcheng
    Liu, Siwei
    He, Qiang
    Yao, Xing
    Zhang, Qiang
    Wei, Hongjiang
    Zhang, Xu
    Zhang, Han
    EUROPEAN JOURNAL OF NEUROSCIENCE, 2024, 60 (11) : 6812 - 6829
  • [5] Connectome-Based Predictive Modeling of Trait Mindfulness
    Treves, Isaac N.
    Kucyi, Aaron
    Park, Madelynn
    Kral, Tammi R. A.
    Goldberg, Simon B.
    Davidson, Richard J.
    Rosenkranz, Melissa
    Whitfield-Gabrieli, Susan
    Gabrieli, John D. E.
    HUMAN BRAIN MAPPING, 2025, 46 (01)
  • [6] Connectome-Based Predictive Modeling of Individual Anxiety
    Wang, Zhihao
    Goerlich, Katharina S.
    Ai, Hui
    Aleman, Andre
    Luo, Yue-Jia
    Xu, Pengfei
    CEREBRAL CORTEX, 2021, 31 (06) : 3006 - 3020
  • [7] Connectome-Based Predictive Modeling of Creativity Anxiety
    Ren, Zhiting
    Daker, Richard J.
    Shi, Liang
    Sun, Jiangzhou
    Beaty, Roger E.
    Wu, Xinran
    Chen, Qunlin
    Yang, Wenjing
    Lyons, Ian M.
    Green, Adam E.
    Qiu, Jiang
    NEUROIMAGE, 2021, 225
  • [8] Functional Connectome-Based Predictive Modeling in Autism
    Horien, Corey
    Floris, Dorothea L.
    Greene, Abigail S.
    Noble, Stephanie
    Rolison, Max
    Tejavibulya, Link
    O'Connor, David
    McPartland, James C.
    Scheinost, Dustin
    Chawarska, Katarzyna
    Lake, Evelyn M. R.
    Constable, R. Todd
    BIOLOGICAL PSYCHIATRY, 2022, 92 (08) : 626 - 642
  • [9] CONNECTOME-BASED PREDICTIVE MODELLING WITH MISSING CONNECTIVITY DATA USING ROBUST MATRIX COMPLETION
    Liang, Qinghao
    Negahban, Sahand
    Chang, Joseph
    Zhou, Harrison H.
    Scheinost, Dustin
    2021 IEEE 18TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2021, : 738 - 742
  • [10] Connectome-based predictive modelling estimates individual cognitive status in Parkinson's disease
    Ysbaek-Nielsen, Alexander Tobias
    PARKINSONISM & RELATED DISORDERS, 2024, 123