Neural correlates of schizotypal traits: Findings from connectome-based predictive modelling

被引:0
|
作者
Chen, Tao [1 ,2 ,3 ,4 ]
Huang, Jia [1 ,2 ]
Cui, Ji-fang [5 ]
Li, Zhi [1 ,2 ]
Irish, Muireann [3 ,4 ]
Wang, Ya [1 ,2 ]
Chan, Raymond C. K. [1 ,2 ]
机构
[1] Inst Psychol, CAS Key Lab Mental Hlth, Neuropsychol & Appl Cognit Neurosci Lab, Beijing, Peoples R China
[2] Univ Chinese Acad Sci, Dept Psychol, Beijing, Peoples R China
[3] Univ Sydney, Brain & Mind Ctr, Sydney, Australia
[4] Univ Sydney, Sch Psychol, Sydney, Australia
[5] Natl Inst Educ Sci, Inst Educ Informat & Stat, Beijing, Peoples R China
基金
美国国家科学基金会; 澳大利亚研究理事会;
关键词
Schizotypal trait; Connectome-based predictive modelling (CPM); Machine learning; Resting-state functional connectivity;
D O I
10.1016/j.ajp.2022.103430
中图分类号
R749 [精神病学];
学科分类号
100205 ;
摘要
Schizotypal traits can be conceptualized as a phenotype for schizophrenia spectrum disorders. As such, a better understanding of schizotypal traits could potentially improve early identification and treatment of schizophrenia. We used connectome-based predictive modelling (CPM) based on whole-brain resting-state functional connec-tivity to predict schizotypal traits in 82 healthy participants. Results showed that only the negative network could reliably predict an individual's schizotypal traits (r = 0.29). The 10 nodes with the highest edges in the negative network were those known to play a key role in sensation and perception, cognitive control as well as motor control. Our findings suggest that CPM might be a promising approach to improve early identification and prevention of schizophrenia from a spectrum perspective.
引用
收藏
页数:3
相关论文
共 50 条
  • [31] Connectome-based modelling of neurodegenerative diseases: towards precision medicine and mechanistic insight
    Jacob W. Vogel
    Nick Corriveau-Lecavalier
    Nicolai Franzmeier
    Joana B. Pereira
    Jesse A. Brown
    Anne Maass
    Hugo Botha
    William W. Seeley
    Dani S. Bassett
    David T. Jones
    Michael Ewers
    Nature Reviews Neuroscience, 2023, 24 : 620 - 639
  • [32] Neuroanatomical correlates of personality traits in temporal lobe epilepsy: Findings from the Epilepsy Connectome Project
    Bonet, Charlene N. Rivera
    Hermann, Bruce
    Cook, Cole J.
    Hwang, Gyujoon
    Dabbs, Kevin
    Nair, Veena
    Forseth, Courtney
    Mathis, Jedidiah
    Allen, Linda
    Almane, Dace N.
    Arkush, Karina
    Birn, Rasmus
    Conant, Lisa L.
    DeYoe, Edgar A.
    Felton, Elizabeth
    Humphries, Colin J.
    Kraegel, Peter
    Maganti, Rama
    Nencka, Andrew
    Nwoke, Onyekachi
    Raghavan, Manoj
    Rozman, Megan
    Shah, Umang
    Sosa, Veronica N.
    Struck, Aaron F.
    Tellapragada, Neelima
    Ustine, Candida
    Ward, B. Douglas
    Prabhakaran, Vivek
    Binder, Jeffrey R.
    Meyerand, Mary E.
    EPILEPSY & BEHAVIOR, 2019, 98 : 220 - 227
  • [33] Longitudinal Connectome-based Predictive Modeling for REM Sleep Behavior Disorder from Structural Brain Connectivity
    Giancardo, Luca
    Ellmore, Timothy M.
    Suescun, Jessika
    Ocasio, Laura
    Kamali, Arash
    Riascos-Castaneda, Roy
    Schiess, Mya C.
    MEDICAL IMAGING 2018: COMPUTER-AIDED DIAGNOSIS, 2018, 10575
  • [34] Connectome-based modelling of neurodegenerative diseases: towards precision medicine and mechanistic insight
    Vogel, Jacob W.
    Corriveau-Lecavalier, Nick
    Franzmeier, Nicolai
    Pereira, Joana B.
    Brown, Jesse A.
    Maass, Anne
    Botha, Hugo
    Seeley, William W.
    Bassett, Dani S.
    Jones, David T.
    Ewers, Michael
    NATURE REVIEWS NEUROSCIENCE, 2023, 24 (10) : 620 - 639
  • [35] Connectome-based predictive modeling: A new approach of predicting individual critical thinking ability
    Dong, Jie
    Xu, Shanshan
    Zhang, Wenjia
    Yun, Peihong
    Jiang, Wenjing
    Yan, Hao
    THINKING SKILLS AND CREATIVITY, 2023, 49
  • [36] Embedding Task-Based Neural Models into a Connectome-Based Model of the Cerebral Cortex
    Ulloa, Antonio
    Horwitz, Barry
    FRONTIERS IN NEUROINFORMATICS, 2016, 10
  • [37] Sex differences in functional connectivity and the predictive role of the connectome-based predictive model in Alzheimer's disease
    Li, Yuqing
    Zhu, Wanqiu
    Zhou, Shanshan
    Li, Hui
    Gao, Ziwen
    Huang, Ziang
    Li, Xiaohu
    Yu, Yongqiang
    Li, Xiaoshu
    JOURNAL OF NEUROSCIENCE RESEARCH, 2024, 102 (03)
  • [38] Specificity of schizotypal traits: Findings from a Bipolar sample
    Heron, J
    Jones, L
    Jones, I
    McCandless, F
    Craddock, N
    AMERICAN JOURNAL OF MEDICAL GENETICS, 2001, 105 (07): : 607 - 607
  • [39] Connectome-based predictive modelling can predict follow-up craving after abstinence in individuals with opioid use disorders
    Yang, Wenhan
    Han, Jungong
    Luo, Jing
    Tang, Fei
    Fan, Li
    Du, Yanyao
    Yang, Longtao
    Zhang, Jun
    Zhang, Huiting
    Liu, Jun
    GENERAL PSYCHIATRY, 2023, 36 (06)
  • [40] Investigating cognitive neuroscience theories of human intelligence: A connectome-based predictive modeling approach
    Anderson, Evan D.
    Barbey, Aron K.
    HUMAN BRAIN MAPPING, 2023, 44 (04) : 1647 - 1665