Estimation of PM2.5 concentrations with high spatiotemporal resolution in Beijing using the ERA5 dataset and machine learning models

被引:6
|
作者
Wang, Zhihao [1 ]
Chen, Peng [1 ,2 ,3 ]
Wang, Rong [1 ]
An, Zhiyuan [1 ]
Qiu, Liangcai [1 ]
机构
[1] Xian Univ Sci & Technol, Coll Geomat, Xian 710054, Peoples R China
[2] Chinese Acad Sci, Innovat Acad Precis Measurement Sci & Technol, State Key Lab Geodesy & Earths Dynam, Wuhan 430077, Peoples R China
[3] Beijing Key Lab Urban Spatial Informat Engn, Beijing 100045, Peoples R China
基金
中国国家自然科学基金;
关键词
PM2; 5; Machine learning; RF; ERA5; Precipitable water vapor; GROUND-LEVEL PM2.5; WATER-VAPOR;
D O I
10.1016/j.asr.2022.12.016
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
PM2.5 is the main component of most haze, and the presence of high concentrations of PM2.5 in the air for an extended time can cause serious effects on human health, so there is an urgent need for research work related to PM2.5. Traditional PM2.5 monitoring uses ground -based monitoring stations with low spatial resolution. Other studies have retrieved the Moderate Resolution Imaging Spectroradiometer aerosol optical depth product by the dark-target algorithm. However, the estimated PM2.5 concentration on the ground will produce missing values, which will lead to the reduction of spatial and temporal resolution. Based on this, this study proposes a machine learning algorithm to estimate PM2.5 by using the fifth generation reanalysis (ERA5) data set published by the European Center for Medium -range Weather Forecasts (ECMWF). In this study, two different methods of back propagation neural network (BPNN) and random forest (RF) were used to develop the models. Firstly, the meteorological parameters (precipitable water vapor, water vapor pressure and relative humidity, etc.) and pollution parameters (O3, CO, NO2, SO2, PM10, and PM2.5) were used to establish PM2.5 model in 2021. The results showed that the R2 and RMSE for BPNN and RF were 0.94/0.96 and 10.37/8.77 mu g/m3, respectively. Then, due to the lack and the low spatial resolution of the pollution parameters, using only the ERA5 meteorological data with the high spatiotem-poral resolution to develop the PM2.5 model in winter, the R2 of the RF model (0.93) was 0.05 higher and the RMSE (12.50 mu g/m3) was 4.19 mu g/m3 lower than that of the BPNN model, which indicates that it is feasible to develop the PM2.5 model using only meteorological parameters. Finally, using the RF model of the second stage and ERA5 meteorological data with a spatial resolution of 0.05 degrees (obtained by cubic spline interpolation) to generate the hourly PM2.5 map of Beijing and compare it with China High Air Pollutants dataset, the R2 and RMSE of Beijing were 0.78 mu g/m3 and 14.85 mu g/m3, respectively. On this basis, it is found that the areas with high PM2.5 concen-tration are close to the areas with serious pollution in Hebei Province by analyzing the PM2.5 map of Beijing, and area transport and human activities are important sources of air pollution.(c) 2022 COSPAR. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:3150 / 3165
页数:16
相关论文
共 50 条
  • [31] Seasonal prediction of daily PM2.5 concentrations with interpretable machine learning: a case study of Beijing, China
    Wu, Yafei
    Lin, Shaowu
    Shi, Kewei
    Ye, Zirong
    Fang, Ya
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2022, 29 (30) : 45821 - 45836
  • [32] Enhancing the Applicability of Satellite Remote Sensing for PM2.5 Estimation Using Machine Learning Models in China
    Chai, Jun
    Song, Jun
    Xu, Yawen
    Zhang, Le
    Guo, Bing
    JOURNAL OF SENSORS, 2022, 2022
  • [33] Spatiotemporal estimation of historical PM2.5 concentrations using PM10, meteorological variables, and spatial effect
    Li, Lianfa
    Wu, Anna H.
    Cheng, Iona
    Chen, Jiu-Chivan
    Wu, Jun
    ATMOSPHERIC ENVIRONMENT, 2017, 166 : 182 - 191
  • [34] Synergy of AERONET and MODIS AOD products in the estimation of PM2.5 concentrations in Beijing
    Fu, Disong
    Xia, Xiangao
    Wang, Jun
    Zhang, Xiaoling
    Li, Xiaojing
    Liu, Jianzhong
    SCIENTIFIC REPORTS, 2018, 8
  • [35] High-resolution estimation of PM 2.5 concentrations across China using multiple machine learning approaches and model fusion
    Meng, Lingtong
    Xu, Xiangqing
    Huang, Xiaona
    Li, Xinju
    Chang, Xiaoyan
    Xu, Dongyun
    ATMOSPHERIC POLLUTION RESEARCH, 2024, 15 (06)
  • [36] Synergy of AERONET and MODIS AOD products in the estimation of PM2.5 concentrations in Beijing
    Disong Fu
    Xiangao Xia
    Jun Wang
    Xiaoling Zhang
    Xiaojing Li
    Jianzhong Liu
    Scientific Reports, 8
  • [37] Daily Estimation of Ground-Level PM2.5 Concentrations over Beijing Using 3 km Resolution MODIS AOD
    Xie, Yuanyu
    Wang, Yuxuan
    Zhang, Kai
    Dong, Wenhao
    Lv, Baolei
    Bai, Yuqi
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2015, 49 (20) : 12280 - 12288
  • [38] Spatiotemporal Weighted for Improving the Satellite-Based High-Resolution Ground PM2.5 Estimation Using the Light Gradient Boosting Machine
    Yu, Xinyu
    Xi, Mengzhu
    Wu, Liyang
    Zheng, Hui
    REMOTE SENSING, 2023, 15 (16)
  • [39] Estimation of PM10 and PM2.5 Using Backscatter Coefficient of Ceilometer and Machine Learning
    Kim, Bu-Yo
    Cha, Joo Wan
    Lee, Yong Hee
    AEROSOL AND AIR QUALITY RESEARCH, 2023, 23 (12)
  • [40] Unmasking the sky: high-resolution PM2.5 prediction in Texas using machine learning techniques
    Zhang, Kai
    Lin, Jeffrey
    Li, Yuanfei
    Sun, Yue
    Tong, Weitian
    Li, Fangyu
    Chien, Lung-Chang
    Yang, Yiping
    Su, Wei-Chung
    Tian, Hezhong
    Fu, Peng
    Qiao, Fengxiang
    Romeiko, Xiaobo Xue
    Lin, Shao
    Luo, Sheng
    Craft, Elena
    JOURNAL OF EXPOSURE SCIENCE AND ENVIRONMENTAL EPIDEMIOLOGY, 2024, 34 (5) : 814 - 820