Estimation of PM2.5 concentrations with high spatiotemporal resolution in Beijing using the ERA5 dataset and machine learning models

被引:6
|
作者
Wang, Zhihao [1 ]
Chen, Peng [1 ,2 ,3 ]
Wang, Rong [1 ]
An, Zhiyuan [1 ]
Qiu, Liangcai [1 ]
机构
[1] Xian Univ Sci & Technol, Coll Geomat, Xian 710054, Peoples R China
[2] Chinese Acad Sci, Innovat Acad Precis Measurement Sci & Technol, State Key Lab Geodesy & Earths Dynam, Wuhan 430077, Peoples R China
[3] Beijing Key Lab Urban Spatial Informat Engn, Beijing 100045, Peoples R China
基金
中国国家自然科学基金;
关键词
PM2; 5; Machine learning; RF; ERA5; Precipitable water vapor; GROUND-LEVEL PM2.5; WATER-VAPOR;
D O I
10.1016/j.asr.2022.12.016
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
PM2.5 is the main component of most haze, and the presence of high concentrations of PM2.5 in the air for an extended time can cause serious effects on human health, so there is an urgent need for research work related to PM2.5. Traditional PM2.5 monitoring uses ground -based monitoring stations with low spatial resolution. Other studies have retrieved the Moderate Resolution Imaging Spectroradiometer aerosol optical depth product by the dark-target algorithm. However, the estimated PM2.5 concentration on the ground will produce missing values, which will lead to the reduction of spatial and temporal resolution. Based on this, this study proposes a machine learning algorithm to estimate PM2.5 by using the fifth generation reanalysis (ERA5) data set published by the European Center for Medium -range Weather Forecasts (ECMWF). In this study, two different methods of back propagation neural network (BPNN) and random forest (RF) were used to develop the models. Firstly, the meteorological parameters (precipitable water vapor, water vapor pressure and relative humidity, etc.) and pollution parameters (O3, CO, NO2, SO2, PM10, and PM2.5) were used to establish PM2.5 model in 2021. The results showed that the R2 and RMSE for BPNN and RF were 0.94/0.96 and 10.37/8.77 mu g/m3, respectively. Then, due to the lack and the low spatial resolution of the pollution parameters, using only the ERA5 meteorological data with the high spatiotem-poral resolution to develop the PM2.5 model in winter, the R2 of the RF model (0.93) was 0.05 higher and the RMSE (12.50 mu g/m3) was 4.19 mu g/m3 lower than that of the BPNN model, which indicates that it is feasible to develop the PM2.5 model using only meteorological parameters. Finally, using the RF model of the second stage and ERA5 meteorological data with a spatial resolution of 0.05 degrees (obtained by cubic spline interpolation) to generate the hourly PM2.5 map of Beijing and compare it with China High Air Pollutants dataset, the R2 and RMSE of Beijing were 0.78 mu g/m3 and 14.85 mu g/m3, respectively. On this basis, it is found that the areas with high PM2.5 concen-tration are close to the areas with serious pollution in Hebei Province by analyzing the PM2.5 map of Beijing, and area transport and human activities are important sources of air pollution.(c) 2022 COSPAR. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:3150 / 3165
页数:16
相关论文
共 50 条
  • [1] Estimation of PM 2.5 concentrations in North China with high spatiotemporal resolution using the ERA5 dataset and machine learning models
    Wang, Zhihao
    Chai, Hongzhou
    Chen, Peng
    Zheng, Naiquan
    Zhang, Qiankun
    ADVANCES IN SPACE RESEARCH, 2024, 74 (02) : 711 - 726
  • [2] Prediction of PM2.5 Concentration Using Spatiotemporal Data with Machine Learning Models
    Ma, Xin
    Chen, Tengfei
    Ge, Rubing
    Xv, Fan
    Cui, Caocao
    Li, Junpeng
    ATMOSPHERE, 2023, 14 (10)
  • [3] High Spatiotemporal Resolution PM2.5 Concentration Estimation with Machine Learning Algorithm: A Case Study for Wildfire in California
    Cui, Qian
    Zhang, Feng
    Fu, Shaoyun
    Wei, Xiaoli
    Ma, Yue
    Wu, Kun
    REMOTE SENSING, 2022, 14 (07)
  • [4] Deep Ensemble Machine Learning Framework for the Estimation of PM2.5 Concentrations
    Yu, Wenhua
    Li, Shanshan
    Ye, Tingting
    Xu, Rongbin
    Song, Jiangning
    Guo, Yuming
    ENVIRONMENTAL HEALTH PERSPECTIVES, 2022, 130 (03)
  • [5] Retrieval of Fine-Grained PM2.5 Spatiotemporal Resolution Based on Multiple Machine Learning Models
    Ma, Peilong
    Tao, Fei
    Gao, Lina
    Leng, Shaijie
    Yang, Ke
    Zhou, Tong
    REMOTE SENSING, 2022, 14 (03)
  • [6] Estimation of PM2.5 concentrations at a high spatiotemporal resolution using constrained mixed-effect bagging models with MAIAC aerosol optical depth
    Li, Lianfa
    Zhang, Jiehao
    Meng, Xia
    Fang, Ying
    Ge, Yong
    Wang, Jinfeng
    Wang, Chengyi
    Wu, Jun
    Kan, Haidong
    REMOTE SENSING OF ENVIRONMENT, 2018, 217 : 573 - 586
  • [7] High-resolution downscaling of source resolved PM2.5 predictions using machine learning models
    Dinkelacker, Brian T.
    Rivera, Pablo Garcia
    Marshall, Julian D.
    Adams, Peter J.
    Pandis, Spyros N.
    ATMOSPHERIC ENVIRONMENT, 2023, 310
  • [8] Spatiotemporal Patterns and Cause Analysis of PM2.5 Concentrations in Beijing, China
    Tian, Guangjin
    Liu, Xiaojuan
    Kong, Lingqiang
    ADVANCES IN METEOROLOGY, 2018, 2018
  • [9] Spatiotemporal variations and influencing factors of PM2.5 concentrations in Beijing, China
    Zhang, Licheng
    An, Ji
    Liu, Mengyang
    Li, Zhiwei
    Liu, Yue
    Tao, Lixin
    Liu, Xiangtong
    Zhang, Feng
    Zheng, Deqiang
    Gao, Qi
    Guo, Xiuhua
    Luo, Yanxia
    ENVIRONMENTAL POLLUTION, 2020, 262
  • [10] A high-resolution computationally-efficient spatiotemporal model for estimating daily PM2.5 concentrations in Beijing, China
    Lyu, Yiran
    Kirwa, Kipruto
    Young, Michael
    Liu, Yue
    Liu, Jie
    Hao, Shuxin
    Li, Runkui
    Xu, Dongqun
    Kaufman, Joel D.
    ATMOSPHERIC ENVIRONMENT, 2022, 290