Unsupervised Transformer-Based Anomaly Detection in ECG Signals

被引:16
|
作者
Alamr, Abrar [1 ]
Artoli, Abdelmonim [1 ]
机构
[1] King Saud Univ, Coll Comp & Informat Sci, Comp Sci Dept, Riyadh 11543, Saudi Arabia
关键词
unsupervised transformers; deep learning; anomaly detection; ECG signal; TIME-SERIES;
D O I
10.3390/a16030152
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Anomaly detection is one of the basic issues in data processing that addresses different problems in healthcare sensory data. Technology has made it easier to collect large and highly variant time series data; however, complex predictive analysis models are required to ensure consistency and reliability. With the rise in the size and dimensionality of collected data, deep learning techniques, such as autoencoder (AE), recurrent neural networks (RNN), and long short-term memory (LSTM), have gained more attention and are recognized as state-of-the-art anomaly detection techniques. Recently, developments in transformer-based architecture have been proposed as an improved attention-based knowledge representation scheme. We present an unsupervised transformer-based method to evaluate and detect anomalies in electrocardiogram (ECG) signals. The model architecture comprises two parts: an embedding layer and a standard transformer encoder. We introduce, implement, test, and validate our model in two well-known datasets: ECG5000 and MIT-BIH Arrhythmia. Anomalies are detected based on loss function results between real and predicted ECG time series sequences. We found that the use of a transformer encoder as an alternative model for anomaly detection enables better performance in ECG time series data. The suggested model has a remarkable ability to detect anomalies in ECG signal and outperforms deep learning approaches found in the literature on both datasets. In the ECG5000 dataset, the model can detect anomalies with 99% accuracy, 99% F1-score, 99% AUC score, 98.1% recall, and 100% precision. In the MIT-BIH Arrhythmia dataset, the model achieved an accuracy of 89.5%, F1 score of 92.3%, AUC score of 93%, recall of 98.2%, and precision of 87.1%.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] STD2: Swin Transformer-Based Defect Detector for Surface Anomaly Detection
    Mia, Md Sohag
    Li, Chunbiao
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2025, 74
  • [32] TGAN-AD: Transformer-Based GAN for Anomaly Detection of Time Series Data
    Xu, Liyan
    Xu, Kang
    Qin, Yinchuan
    Li, Yixuan
    Huang, Xingting
    Lin, Zhicheng
    Ye, Ning
    Ji, Xuechun
    APPLIED SCIENCES-BASEL, 2022, 12 (16):
  • [33] Application of Transformer-based Anomaly Detection in Dam Structural Strong Motion Monitoring Data
    Xiang, Hong
    Zhu, Jiajian
    Zhang, Yi
    Zhang, Yuting
    Zhu, Xinhua
    ce/papers, 2025, 8 (02) : 749 - 759
  • [34] Explainable TabNet Transformer-based on Google Vizier Optimizer for Anomaly Intrusion Detection System
    Fares, Ibrahim A.
    Abd Elaziz, Mohamed
    KNOWLEDGE-BASED SYSTEMS, 2025, 316
  • [35] Transformer-Based Approach to Melanoma Detection
    Cirrincione, Giansalvo
    Cannata, Sergio
    Cicceri, Giovanni
    Prinzi, Francesco
    Currieri, Tiziana
    Lovino, Marta
    Militello, Carmelo
    Pasero, Eros
    Vitabile, Salvatore
    SENSORS, 2023, 23 (12)
  • [36] Transformer-Based Fire Detection in Videos
    Mardani, Konstantina
    Vretos, Nicholas
    Daras, Petros
    SENSORS, 2023, 23 (06)
  • [37] Transformer-based fall detection in videos
    Nunez-Marcos, Adrian
    Arganda-Carreras, Ignacio
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 132
  • [38] Transformer-based Text Detection in the Wild
    Raisi, Zobeir
    Naiel, Mohamed A.
    Younes, Georges
    Wardell, Steven
    Zelek, John S.
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW 2021, 2021, : 3156 - 3165
  • [39] RESIST: Robust Transformer for Unsupervised Time Series Anomaly Detection
    Najari, Naji
    Berlemont, Samuel
    Lefebvre, Gregoire
    Duffner, Stefan
    Garcia, Christophe
    ADVANCED ANALYTICS AND LEARNING ON TEMPORAL DATA, AALTD 2022, 2023, 13812 : 66 - 82
  • [40] MTAD: Multiobjective Transformer Network for Unsupervised Multisensor Anomaly Detection
    Belay, Mohammed Ayalew
    Rasheed, Adil
    Rossi, Pierluigi Salvo
    IEEE SENSORS JOURNAL, 2024, 24 (12) : 20254 - 20265