Multi-fidelity surrogate modeling using long short-term memory networks

被引:35
|
作者
Conti, Paolo [1 ]
Guo, Mengwu [2 ]
Manzoni, Andrea [3 ]
Hesthaven, Jan S. [4 ]
机构
[1] Politecn Milan, Dept Civil Engn, Milan, Italy
[2] Univ Twente, Dept Appl Math, Enschede, Netherlands
[3] Politecn Milan, Dept Math, MOX, Milan, Italy
[4] Ecole Polytech Fed Lausanne, Inst Math, Lausanne, Switzerland
关键词
Machine learning; Multi-fidelity regression; LSTM network; Parametrized PDE; Time-dependent problem; APPROXIMATION;
D O I
10.1016/j.cma.2022.115811
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
When evaluating quantities of interest that depend on the solutions to differential equations, we inevitably face the trade-off between accuracy and efficiency. Especially for parametrized, time-dependent problems in engineering computations, it is often the case that acceptable computational budgets limit the availability of high-fidelity, accurate simulation data. Multi-fidelity surrogate modeling has emerged as an effective strategy to overcome this difficulty. Its key idea is to leverage many low-fidelity simulation data, less accurate but much faster to compute, to improve the approximations with limited high-fidelity data. In this work, we introduce a novel data-driven framework of multi-fidelity surrogate modeling for parametrized, time-dependent problems using long short-term memory (LSTM) networks, to enhance output predictions both for unseen parameter values and forward in time simultaneously - a task known to be particularly challenging for data-driven models. We demonstrate the wide applicability of the proposed approaches in a variety of engineering problems with high-and low-fidelity data generated through fine versus coarse meshes, small versus large time steps, or finite element full order versus deep learning reduced-order models. Numerical results show that the proposed multi-fidelity LSTM networks not only improve single-fidelity regression significantly, but also outperform the multi-fidelity models based on feed-forward neural networks.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:22
相关论文
共 50 条
  • [31] Descriptor Free QSAR Modeling Using Deep Learning With Long Short-Term Memory Neural Networks
    Chakravarti, Suman K.
    Alla, Sai Radha Mani
    FRONTIERS IN ARTIFICIAL INTELLIGENCE, 2019, 2
  • [32] Adaptive experimental design for multi-fidelity surrogate modeling of multi-disciplinary systems
    Jakeman, John D.
    Friedman, Sam
    Eldred, Michael S.
    Tamellini, Lorenzo
    Gorodetsky, Alex A.
    Allaire, Doug
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2022, 123 (12) : 2760 - 2790
  • [33] Empirical modeling of ethanol production dynamics using long short-term memory recurrent neural networks
    Sousa F.M.M.
    Fonseca R.R.
    da Silva F.V.
    Bioresource Technology Reports, 2021, 15
  • [34] Short-term Individual Electric Vehicle Charging Behavior Prediction Using Long Short-term Memory Networks
    Khwaja, Ahmed S.
    Venkatesh, Bala
    Anpalagan, Alagan
    2020 IEEE 25TH INTERNATIONAL WORKSHOP ON COMPUTER AIDED MODELING AND DESIGN OF COMMUNICATION LINKS AND NETWORKS (CAMAD), 2020,
  • [35] Diagnosing Dysarthria with Long Short-Term Memory Networks
    Mayle, Alex
    Mou, Zhiwei
    Bunescu, Razvan
    Mirshekarian, Sadegh
    Xu, Li
    Liu, Chang
    INTERSPEECH 2019, 2019, : 4514 - 4518
  • [36] Molecular Design With Long Short-Term Memory Networks
    Grisoni, Francesca
    Schneider, Gisbert
    JOURNAL OF COMPUTER AIDED CHEMISTRY, 2019, 20 : 35 - 42
  • [37] Long Short Term Memory Networks for Short-Term Electric Load Forecasting
    Narayan, Apurva
    Hipel, Keith W.
    2017 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2017, : 2573 - 2578
  • [38] Multi-fidelity surrogate reduced-order modeling of steady flow estimation
    Wang, Xu
    Kou, Jiaqing
    Zhang, Weiwei
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2020, 92 (12) : 1826 - 1844
  • [39] HIERARCHICAL GAUSSIAN PROCESS SURROGATE MODELING FRAMEWORK FOR HETEROGENEOUS MULTI-FIDELITY DATASET
    Lee, Juyoung
    Lee, Mingyu
    Lee, Bong Jae
    Lee, Ikjin
    PROCEEDINGS OF ASME 2023 INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, IDETC-CIE2023, VOL 2, 2023,
  • [40] Short-Term Load Forecasting using A Long Short-Term Memory Network
    Liu, Chang
    Jin, Zhijian
    Gu, Jie
    Qiu, Caiming
    2017 IEEE PES INNOVATIVE SMART GRID TECHNOLOGIES CONFERENCE EUROPE (ISGT-EUROPE), 2017,