A survey on rainbow (vertex-)index of graphs

被引:0
|
作者
Zhao, Yan [1 ,2 ,3 ,4 ]
Zhang, Zan-Bo [5 ,6 ]
Zhang, Xiaoyan [1 ,2 ,3 ]
机构
[1] Nanjing Normal Univ, Sch Math Sci, Nanjing 210023, Peoples R China
[2] Nanjing Normal Univ, Inst Math, Nanjing 210023, Peoples R China
[3] Nanjing Normal Univ, Key Lab NSLSCS, Minist Educ, Nanjing 210023, Peoples R China
[4] Taizhou Univ, Dept Math, Taizhou 225300, Peoples R China
[5] Guangdong Univ Finance & Econ, Sch Stat & Math, Guangzhou 510320, Peoples R China
[6] Guangdong Univ Finance & Econ, Inst Artificial Intelligence & Deep Learning, Guangzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
(Vertex-)coloring; Connectivity; (Vertex-)rainbowS-tree; (Vertex-)rainbow index; VERTEX-CONNECTION NUMBER; 3-RAINBOW INDEX; COMPLEXITY; HARDNESS;
D O I
10.1016/j.dam.2024.01.016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The concept of rainbow connection was introduced by Chartrand et al. in 2008. The k-rainbow index, which is a generalization of rainbow connection number was also introduced by Chartrand et al. in 2010. These two new graph-parameters are defined for all edge-colored graphs. Krivelevich and Yuster in 2010 naturally introduced the rainbow vertex-connection number which is defined on vertex-colored graphs. As a natural counterpart of the k-rainbow index and a generalization of rainbow vertexconnection number, Mao introduced the concept of k-vertex-rainbow index in 2016. Nowadays they have become new and active subjects in graph theory. In this survey we attempt to bring together most of the basic and new results that dealt with the k-rainbow index and k-vertex-rainbow index. (c) 2024 Published by Elsevier B.V.
引用
收藏
页码:96 / 105
页数:10
相关论文
共 50 条
  • [31] Rainbow Connections of Graphs: A Survey
    Li, Xueliang
    Shi, Yongtang
    Sun, Yuefang
    GRAPHS AND COMBINATORICS, 2013, 29 (01) : 1 - 38
  • [32] Rainbow Connections of Graphs: A Survey
    Xueliang Li
    Yongtang Shi
    Yuefang Sun
    Graphs and Combinatorics, 2013, 29 : 1 - 38
  • [33] Rainbow and Monochromatic Vertex-connection of Random Graphs
    Li, Wen-jing
    Jiang, Hui
    He, Jia-bei
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2022, 38 (04): : 966 - 972
  • [34] Strong Rainbow Vertex-Connection of Cubic Graphs
    Arputhamary, I. Annammal
    Mercy, M. Helda
    PROCEEDINGS OF 2015 IEEE 9TH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS AND CONTROL (ISCO), 2015,
  • [35] Further Results on the Rainbow Vertex-Disconnection of Graphs
    Li, Xueliang
    Weng, Yindi
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2021, 44 (05) : 3445 - 3460
  • [36] Note on the Vertex-Rainbow Index of a Graph
    Zhao, Yan
    Li, Fengwei
    Zhang, Xiaoyan
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2021, 44 (05) : 2957 - 2969
  • [37] Rainbow and Monochromatic Vertex-connection of Random Graphs
    Wen-jing LI
    Hui JIANG
    Jia-bei HE
    ActaMathematicaeApplicataeSinica, 2022, 38 (04) : 966 - 972
  • [38] Rainbow vertex connection number of dense and sparse graphs
    Liu, Mengmeng
    ARS COMBINATORIA, 2016, 125 : 393 - 399
  • [39] The Rainbow Vertex Connection Number of Star Wheel Graphs
    Bustan, Ariestha Widyastuty
    Salman, A. N. M.
    INTERNATIONAL CONFERENCE ON SCIENCE AND APPLIED SCIENCE (ICSAS) 2019, 2019, 2202
  • [40] On the Complexity of Rainbow Vertex Colouring Diametral Path Graphs
    Dyrseth, Jakob
    Lima, Paloma T.
    Leibniz International Proceedings in Informatics, LIPIcs, 2022, 248