SSCL: Semi-supervised Contrastive Learning for Industrial Anomaly Detection

被引:0
|
作者
Cai, Wei [1 ]
Gao, Jiechao [2 ]
机构
[1] Univ Sci & Technol Beijing, Beijing, Peoples R China
[2] Univ Virginia, Charlottesville, VA 22904 USA
关键词
Semi-supervised classification; Anomaly detection; Contrastive learning; Data representation;
D O I
10.1007/978-981-99-8462-6_9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Anomaly detection is an important machine learning task that aims to identify data points that are inconsistent with normal data patterns. In real-world scenarios, it is common to have access to some labeled and unlabeled samples that are known to be either normal or anomalous. To make full use of both types of data, we propose a semi-supervised contrastive learning method that combines self-supervised contrastive learning and supervised contrastive learning, forming a new framework: SSCL. Our method can learn a data representation that can distinguish between normal and anomalous data patterns, based on limited labeled data and abundant unlabeled data. We evaluate our method on multiple benchmark datasets, including MNIST, CIFAR-10 and industrial anomaly detection MVtec, STC. The experimental results show that our method achieves superior performance on all datasets compared to existing state-of-the-art methods.
引用
收藏
页码:100 / 112
页数:13
相关论文
共 50 条
  • [1] Semi-Supervised Anomaly Detection with Contrastive Regularization
    Jezequel, Loic
    Vu, Ngoc-Son
    Beaudet, Jean
    Histace, Aymeric
    [J]. 2022 26TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2022, : 2664 - 2671
  • [2] Hierarchical Semi-supervised Contrastive Learning for Contamination-Resistant Anomaly Detection
    Wang, Gaoang
    Zhan, Yibing
    Wang, Xinchao
    Song, Mingli
    Nahrstedt, Klara
    [J]. COMPUTER VISION, ECCV 2022, PT XXV, 2022, 13685 : 110 - 128
  • [3] Semi-supervised Anomaly Detection with Reinforcement Learning
    Lee, Changheon
    Kim, JoonKyu
    Kang, Suk-Ju
    [J]. 2022 37TH INTERNATIONAL TECHNICAL CONFERENCE ON CIRCUITS/SYSTEMS, COMPUTERS AND COMMUNICATIONS (ITC-CSCC 2022), 2022, : 933 - 936
  • [4] Semi-supervised vanishing point detection with contrastive learning
    Wang, Yukun
    Gu, Shuo
    Liu, Yinbo
    Kong, Hui
    [J]. PATTERN RECOGNITION, 2024, 153
  • [5] SSCL-TransMD: Semi-Supervised Continual Learning Transformer for Malicious Software Detection
    Kou, Liang
    Zhao, Donghui
    Han, Hui
    Xu, Xiong
    Gong, Shuaige
    Wang, Liandong
    [J]. APPLIED SCIENCES-BASEL, 2023, 13 (22):
  • [6] CONTRASTIVE SEMI-SUPERVISED LEARNING FOR ASR
    Xiao, Alex
    Fuegen, Christian
    Mohamed, Abdelrahman
    [J]. 2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 3870 - 3874
  • [7] LEARNING DISCRIMINATIVE FEATURES FOR SEMI-SUPERVISED ANOMALY DETECTION
    Feng, Zhe
    Tang, Jie
    Dou, Yishun
    Wu, Gangshan
    [J]. 2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 2935 - 2939
  • [8] Anomaly and Novelty detection for robust semi-supervised learning
    Cappozzo, Andrea
    Greselin, Francesca
    Murphy, Thomas Brendan
    [J]. STATISTICS AND COMPUTING, 2020, 30 (05) : 1545 - 1571
  • [9] Contrastive Regularization for Semi-Supervised Learning
    Lee, Doyup
    Kim, Sungwoong
    Kim, Ildoo
    Cheon, Yeongjae
    Cho, Minsu
    Han, Wook-Shin
    [J]. 2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW 2022, 2022, : 3910 - 3919
  • [10] Semi-supervised Deep Learning for Network Anomaly Detection
    Sun, Yuanyuan
    Guo, Lili
    Li, Ye
    Xu, Lele
    Wang, Yongming
    [J]. ALGORITHMS AND ARCHITECTURES FOR PARALLEL PROCESSING, ICA3PP 2019, PT II, 2020, 11945 : 383 - 390