Non-Markovian epidemic spreading on temporal networks

被引:8
|
作者
Han, Lilei [1 ]
Lin, Zhaohua [3 ]
Yin, Qingqing [4 ]
Tang, Ming [1 ,2 ]
Guan, Shuguang [1 ]
Boguna, Marian [5 ,6 ]
机构
[1] East China Normal Univ, Sch Phys & Elect Sci, Shanghai 200241, Peoples R China
[2] East China Normal Univ, Shanghai Key Lab Multidimens Informat Proc, Shanghai 200241, Peoples R China
[3] Hong Kong Baptist Univ, Dept Phys, Kowloon, Hong Kong, Peoples R China
[4] Tongji Univ, Shanghai Key Lab Special Artificial Microstruct M, Sch Phys Sci & Engn, Ctr Phonon & Thermal Energy Sci, Shanghai, Peoples R China
[5] Dept Fis Mat Condensada, Marti i Franques 1, Barcelona 08028, Spain
[6] Univ Barcelona, UBICS, Barcelona, Spain
基金
中国国家自然科学基金;
关键词
Non-Markovian spreading dynamics; Temporal networks; Equivalence; SMALLPOX;
D O I
10.1016/j.chaos.2023.113664
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Many empirical studies have revealed that the occurrences of contacts associated with human activities are non-Markovian temporal processes with a heavy tailed inter-event time distribution. Besides, there has been increasing empirical evidence that the infection and recovery rates are time-dependent. However, we lack a comprehensive framework to analyze and understand non-Markovian contact and spreading processes on temporal networks. In this paper, we propose a general formalism to study non-Markovian dynamics on non-Markovian temporal networks. We find that, under certain conditions, non-Markovian dynamics on temporal networks are equivalent to Markovian dynamics on static networks. Interestingly, this result is independent of the underlying network topology.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Non-Markovian processes on heteroclinic networks
    Manicom, Gray
    Kirk, Vivien
    Postlethwaite, Claire
    CHAOS, 2024, 34 (03)
  • [22] FUNCTIONAL LIMIT THEOREMS FOR NON-MARKOVIAN EPIDEMIC MODELS
    Pang, Guodong
    Pardoux, Etienne
    ANNALS OF APPLIED PROBABILITY, 2022, 32 (03): : 1615 - 1665
  • [23] Dynamic survival analysis for non-Markovian epidemic models
    Di Lauro, Francesco
    KhudaBukhsh, Wasiur R.
    Kiss, Istvan Z.
    Kenah, Eben
    Jensen, Max
    Rempala, Grzegorz A.
    JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2022, 19 (191)
  • [24] Non-Markovian Speedup Dynamics in Markovian and Non-Markovian Channels
    Jing Nie
    Yingshuang Liang
    Biao Wang
    Xiuyi Yang
    International Journal of Theoretical Physics, 2021, 60 : 2889 - 2900
  • [25] Non-Markovian Speedup Dynamics in Markovian and Non-Markovian Channels
    Nie, Jing
    Liang, Yingshuang
    Wang, Biao
    Yang, Xiuyi
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2021, 60 (08) : 2889 - 2900
  • [26] Equivalence and its invalidation between non-Markovian and Markovian spreading dynamics on complex networks (vol 10, 3748, 2019)
    Feng, Mi
    Cai, Shi-Min
    Tang, Ming
    Lai, Ying-Cheng
    NATURE COMMUNICATIONS, 2019, 10 (1)
  • [27] Non-Markovian temporal networks with auto- and cross-correlated link dynamics
    Williams, Oliver E.
    Mazzarisi, Piero
    Lillo, Fabrizio
    Latora, Vito
    PHYSICAL REVIEW E, 2022, 105 (03)
  • [28] Epidemic spreading and aging in temporal networks with memory
    Tizzani, Michele
    Lenti, Simone
    Ubaldi, Enrico
    Vezzani, Alessandro
    Castellano, Claudio
    Burioni, Raffaella
    PHYSICAL REVIEW E, 2018, 98 (06)
  • [29] Non-Markovian Infection Spread Dramatically Alters the Susceptible-Infected-Susceptible Epidemic Threshold in Networks
    Van Mieghem, P.
    van de Bovenkamp, R.
    PHYSICAL REVIEW LETTERS, 2013, 110 (10)
  • [30] Rational Automata Networks: A Non-Markovian Modeling Approach
    Buchholz, Peter
    Telek, Miklos
    INFORMS JOURNAL ON COMPUTING, 2013, 25 (01) : 87 - 101