Predicting concrete strength through packing density using machine learning models

被引:21
|
作者
Pallapothu, Swamy Naga Ratna Giri [1 ]
Pancharathi, Rathish Kumar [1 ]
Janib, Rakesh [1 ]
机构
[1] Natl Inst Technol Warangal, Dept Civil Engn, Warangal 506004, Telangana, India
关键词
Packing density; Strength; Prediction; Machine learning; Performance measures; COMPRESSIVE STRENGTH;
D O I
10.1016/j.engappai.2023.107177
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This study presents an innovative approach to predict concrete compressive strength using particle packing theories through machine learning techniques. The existing challenge in concrete engineering lies in the accurate estimation of concrete strength, a critical factor in construction. The adoption of particle packing theories, which hold great promise for enhancing concrete performance, has been limited due to the complexity and timeconsuming nature of the required calculations. An approach encompassing particle packing models (JD Dewar Model, Compressible Packing Model, and Modified Toufar Model) with machine learning is the novelty of the work. These models optimize the packing density of aggregate proportions while minimizing the void ratio, essential for achieving desired compressive strength criteria. To train the model, a comprehensive dataset comprising 479 concrete mixtures, each associated with known compressive strength values relative to packing density, is utilized. A significant advancement in predicting concrete compressive strength is demonstrated by the results. The approach outperforms traditional empirical models, offering precise and reliable predictions based on packing density. Importantly, this innovation eliminates the need for time-consuming and costly trialand-error procedures in concrete mix design. The strong performance of various models in predicting concrete strength using particle packing theories is underscored by the study, with R<^>2 values ranging from 0.664 to 0.999. By combining concepts of particle packing theories and machine learning, a more efficient and reliable method for predicting concrete compressive strength is achieved. This innovation has the potential to revolutionize concrete mix design, leading to more durable and cost-effective construction practices.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Predicting compressive strength of geopolymer concrete using machine learning models
    Kurhade, Swapnil Deepak
    Patankar, Subhash
    INNOVATIVE INFRASTRUCTURE SOLUTIONS, 2025, 10 (01)
  • [2] Predicting concrete compressive strength using hybrid ensembling of surrogate machine learning models
    Asteris, Panagiotis G.
    Skentou, Athanasia D.
    Bardhan, Abidhan
    Samui, Pijush
    Pilakoutas, Kypros
    CEMENT AND CONCRETE RESEARCH, 2021, 145 (145)
  • [3] Machine learning based models for predicting compressive strength of geopolymer concrete
    Le, Quang-Huy
    Nguyen, Duy-Hung
    Sang-To, Thanh
    Khatir, Samir
    Le-Minh, Hoang
    Gandomi, Amir H.
    Cuong-Le, Thanh
    FRONTIERS OF STRUCTURAL AND CIVIL ENGINEERING, 2024, 18 (07) : 1028 - 1049
  • [4] Machine Learning Models for Predicting Bond Strength of Deformed Bars in Concrete
    V. Degtyarev, Vitaliy
    ACI STRUCTURAL JOURNAL, 2022, 119 (05) : 43 - 56
  • [5] Comparing the performance of machine learning models for predicting the compressive strength of concrete
    Arthur Afonso Bitencourt Loureiro
    Ricardo Stefani
    Discover Civil Engineering, 1 (1):
  • [6] Predicting compressive strength of geopolymer concrete using machine learning
    Gupta, Priyanka
    Gupta, Nakul
    Saxena, Kuldeep K. K.
    INNOVATION AND EMERGING TECHNOLOGIES, 2023, 10
  • [7] Predicting the compressive strength of cellulose nanofibers reinforced concrete using regression machine learning models
    Anwar, Aftab
    Yang, Wenyi
    Jing, Li
    Wang, Yanweig
    Sun, Bo
    Ameen, Muhammad
    Shah, Ismail
    Li, Chunsheng
    Ul Mustafa, Zia
    Muhammad, Yaseen
    COGENT ENGINEERING, 2023, 10 (01):
  • [8] Study on the applicability of regression models and machine learning models for predicting concrete compressive strength
    Kim, Sangwoo
    Kim, Jinsup
    Shin, Jaeho
    Kim, Youngsoon
    STRUCTURAL ENGINEERING AND MECHANICS, 2024, 91 (06) : 583 - 589
  • [9] Machine learning models for predicting the compressive strength of concrete containing nano silica
    Garg, Aman
    Aggarwal, Paratibha
    Aggarwal, Yogesh
    Belarbi, M. O.
    Chalak, H. D.
    Tounsi, Abdelouahed
    Gulia, Reeta
    COMPUTERS AND CONCRETE, 2022, 30 (01): : 33 - 42
  • [10] Feature engineering for predicting compressive strength of high-strength concrete with machine learning models
    Kumar P.
    Pratap B.
    Asian Journal of Civil Engineering, 2024, 25 (1) : 723 - 736