Piezotronic, ZnO Overlaid Bragg Grating Organic Vapor Sensors

被引:2
|
作者
Lopez-Torres, Diego [1 ]
Aguado, Cesar Elosua [1 ]
Pappas, Georgios A. [2 ]
Konstantaki, Maria [3 ]
Klini, Argyro [3 ]
Lappas, Alexandros [3 ]
Arregui, Francisco J. [1 ]
Pissadakis, Stavros [3 ]
机构
[1] Univ Publ Navarra, Elect Elect & Commun Dept, Pamplona 31006, Spain
[2] Swiss Fed Inst Technol, Lab Composite Mat & Adapt Struct, CH-8092 Zurich, Switzerland
[3] Fdn Res & Technol Hellas FORTH, Inst Elect Struct & Laser IESL, Iraklion 70013, Greece
基金
欧盟地平线“2020”;
关键词
Piezotronics; tilted optical fiber Bragg grating (TOFBG) sensors; volatile organic compounds (VOCs); zinc oxide (ZnO); GAS SENSOR; NANOWIRES;
D O I
10.1109/JSEN.2023.3270966
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present a zinc oxide (ZnO) out-cladding, overlaid optical fiber Bragg grating sensor, for the detection of vapors of common alcohols and acetone at concentrations lower than 25 ppm while operating at room temperature (RT). The optical fiber sensing results indicate a chemostriction effect occurring in the ZnO layer when exposed to volatile organic compounds (VOCs), which in turn induces shifts in the cladding, and most importantly, in the core confined, Bragg mode. The sensor exhibits a maximum sensitivity of similar to 1 pm/ppm to ethanol vapors, with exposure to other alcohol vapors (isopropanol and methanol) showing lower sensitivities; also, response to acetone vapors was traced at similar to 0.5 pm/ppm. X-ray diffraction (XRD) measurements of the ZnO nanolayer revealed that, in saturated ethanol vapors atmosphere, the polycrystalline ZnO film undergoes a contraction by 0.6% of the interplanar distance corresponding to the (002) crystalline direction, denoting the chemostrictive effect through an underlying piezotronic mechanism. XRD measurements and optical fiber sensing data are further correlated by numerical simulations carried out, so to study the strain interactions of the ZnO layer with the silica glass optical fiber.
引用
收藏
页码:12536 / 12543
页数:8
相关论文
共 50 条
  • [31] Fiber Bragg Grating Sensors for Harsh Environments
    Mihailov, Stephen J.
    SENSORS, 2012, 12 (02): : 1898 - 1918
  • [32] High performance of ZnO nanowire protein sensors enhanced by the piezotronic effect
    Yu, Ruomeng
    Pan, Caofeng
    Wang, Zhong Lin
    ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (02) : 494 - 499
  • [33] Interrogation of fibre Bragg grating sensors using an arrayed waveguide grating
    Norman, DCC
    Webb, DJ
    Pechstedt, RD
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2005, 16 (03) : 691 - 698
  • [34] Fibre Bragg grating sensors as a measurement tool for an organic Rankine cycle micro-turbogenerator
    Mieloszyk, Magdalena
    Majewska, Katarzyna
    Zywica, Grzegorz
    Kaczmarczyk, Tomasz Z.
    Jurek, Michal
    Ostachowicz, Wieslaw
    MEASUREMENT, 2020, 157
  • [35] Fiber Bragg Grating (FBG) sensors as flatness and mechanical stretching sensors
    Abbaneo, D.
    Abbas, M.
    Abbrescia, M.
    Abdelalim, A. A.
    Akl, M. Abi
    Aboamer, O.
    Acosta, D.
    Ahmad, A.
    Ahmed, W.
    Ahmed, W.
    Aleksandrov, A.
    Aly, R.
    Altieri, P.
    Asawatangtrakuldee, C.
    Aspell, P.
    Assran, Y.
    Awan, I.
    Bally, S.
    Ban, Y.
    Banerjee, S.
    Barashko, V.
    Barria, P.
    Bencze, G.
    Beni, N.
    Benussi, L.
    Bhopatkar, V.
    Bianco, S.
    Bos, J.
    Bouhali, O.
    Braghieri, A.
    Braibant, S.
    Buontempo, S.
    Calabria, C.
    Caponero, M.
    Caputo, C.
    Cassese, F.
    Castaneda, A.
    Cauwenbergh, S.
    Cavallo, F. R.
    Celik, A.
    Choi, M.
    Choi, S.
    Christiansen, J.
    Cimmino, A.
    Colafranceschi, S.
    Colaleo, A.
    Garcia, A. Conde
    Czellar, S.
    Dabrowski, M. M.
    De Lentdecker, G.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2016, 824 : 493 - 495
  • [36] Fiber Bragg Grating Sensors Integrated in Polymeric Foils
    Silva, A. F.
    Goncalves, F.
    Ferreira, L. A.
    Araujo, F. M.
    Mendes, P. M.
    Correia, J. H.
    ADVANCED MATERIALS FORUM V, PT 1 AND 2, 2010, 636-637 : 1548 - +
  • [37] An investigation of linearity and sensitivity of Fiber Bragg Grating sensors
    Tahir, B. A.
    Ali, J.
    Rahman, R. A.
    Ahmed, A.
    JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS, 2009, 11 (11): : 1692 - 1695
  • [38] New approach to the strain analysis of bragg grating sensors
    Da Cunha J.R.A.
    Alcantara Jr. P.
    Brígida A.S.
    Borges G.
    Costa J.W.
    Photonic Sensors, 2013, 3 (01) : 74 - 80
  • [39] An Intensiometric Detection System for Fibre Bragg Grating Sensors
    Wild, Graham
    Hinckley, Steven
    2008 JOINT CONFERENCE OF THE OPTO-ELECTRONICS AND COMMUNICATIONS CONFERENCE AND THE AUSTRALIAN CONFERENCE ON OPTICAL FIBRE TECHNOLOGY, VOLS 1 AND 2, 2008, : 548 - 549
  • [40] Detection of flowline blockage using Bragg grating sensors
    Berthold, JW
    FIBER OPTIC AND LASER SENSORS AND APPLICATIONS: INCLUDING DISTRIBUTED AND MULTIPLEXED FIBER OPTIC SENSORS VII, 1999, 3541 : 8 - 17