N-particle irreducible actions for stochastic fluids

被引:3
|
作者
Chao, Jingyi [1 ]
Schafer, Thomas [2 ]
机构
[1] Jiangxi Normal Univ, Coll Phys & Commun Elect, Nanchang 330022, Peoples R China
[2] North Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA
关键词
Random Systems; Phase Diagram or Equation of State; Quark-Gluon Plasma; ENTROPY PRINCIPLE; SUPERFLUID SYSTEMS; CRITICAL-DYNAMICS; RENORMALIZATION;
D O I
10.1007/JHEP06(2023)057
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We construct one- and two-particle irreducible (1PI and 2PI) effective actions for the stochastic fluid dynamics of a conserved density undergoing diffusive motion. We compute the 1PI action in one-loop order and the 2PI action in two-loop approximation. We derive a set of Schwinger-Dyson equations and regularize the resulting equations using Pauli-Villars fields. We numerically solve the Schwinger-Dyson equations for a non-critical fluid. We find that higher-loop effects summed by the Schwinger-Dyson renormalize the non-linear coupling. We also find indications of a diffuson-cascade, the appearance of n-loop correction with smaller and smaller exponential suppression.
引用
收藏
页数:16
相关论文
共 50 条
  • [11] RELATIVISTIC N-PARTICLE SYSTEMS AND CONFINEMENT
    KING, MJ
    ROHRLICH, F
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1980, 25 (04): : 490 - 491
  • [12] n-Particle Quantum Statistics on Graphs
    J. M. Harrison
    J. P. Keating
    J. M. Robbins
    A. Sawicki
    Communications in Mathematical Physics, 2014, 330 : 1293 - 1326
  • [13] FORMAL THEORY OF N-PARTICLE SCATTERING
    WEYERS, J
    PHYSICAL REVIEW, 1966, 145 (04): : 1236 - &
  • [14] REDUCTION OF N-PARTICLE VARIATIONAL PROBLEM
    GARROD, C
    PERCUS, JK
    JOURNAL OF MATHEMATICAL PHYSICS, 1964, 5 (12) : 1756 - &
  • [15] EXACT SOLUTION OF AN N-PARTICLE SYSTEM
    THOMPSON, KW
    NUCLEAR PHYSICS A, 1967, A 99 (03) : 421 - &
  • [16] N-particle Bogoliubov vacuum state
    Dziarmaga, J.
    Sacha, K.
    LASER PHYSICS, 2006, 16 (07) : 1134 - 1139
  • [17] Generally covariant N-particle dynamics
    Miller, Tomasz
    Eckstein, Michal
    Horodecki, Pawel
    Horodecki, Ryszard
    JOURNAL OF GEOMETRY AND PHYSICS, 2021, 160
  • [18] VIRTUAL LEVELS OF N-PARTICLE SYSTEMS
    ZHISLIN, GM
    THEORETICAL AND MATHEMATICAL PHYSICS, 1986, 68 (02) : 815 - 823
  • [19] n-Particle Quantum Statistics on Graphs
    Harrison, J. M.
    Keating, J. P.
    Robbins, J. M.
    Sawicki, A.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2014, 330 (03) : 1293 - 1326
  • [20] DISTORTION ANALYTICITY FOR N-PARTICLE HAMILTONIANS
    GERARD, C
    HELVETICA PHYSICA ACTA, 1993, 66 (02): : 216 - 225