Multilingual Pre-training Model-Assisted Contrastive Learning Neural Machine Translation

被引:0
|
作者
Sun, Shuo [1 ]
Hou, Hong-xu [1 ]
Yang, Zong-heng [1 ]
Wang, Yi-song [1 ]
机构
[1] Inner Mongolia Univ, Coll Comp Sci, Natl & Local Joint Engn Res Ctr Intelligent Infor, Inner Mongolia Key Lab Mongolian Informat Proc Te, Hohhot, Peoples R China
关键词
Low-Resource NMT; Pre-training Model; Contrastive Learning; Dynamic Training;
D O I
10.1109/IJCNN54540.2023.10191766
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Since pre-training and fine-tuning have been a successful paradigm in Natural Language Processing (NLP), this paper adopts the SOTA pre-training model-CeMAT as a strong assistant for low-resource ethnic language translation tasks. Aiming at the exposure bias problem in the fine-tuning process, we use the contrastive learning framework and propose a new contrastive examples generation method, which uses self-generated predictions as contrastive examples to expose the model to errors during inference. Moreover, in order to effectively utilize the limited bilingual data in low-resource tasks, this paper proposes a dynamic training strategy to fine-tune the model, and refines the model step by step by taking word embedding norm and uncertainty as the criteria of evaluate data and model respectively. Experimental results demonstrate that our method significantly improves the quality compared to the baselines, which fully verifies the effectiveness.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training
    Qiu, Jiezhong
    Chen, Qibin
    Dong, Yuxiao
    Zhang, Jing
    Yang, Hongxia
    Ding, Ming
    Wang, Kuansan
    Tang, Jie
    KDD '20: PROCEEDINGS OF THE 26TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2020, : 1150 - 1160
  • [32] Context-Interactive Pre-Training for Document Machine Translation
    Yang, Pengcheng
    Zhang, Pei
    Chen, Boxing
    Xie, Jun
    Luo, Weihua
    2021 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL-HLT 2021), 2021, : 3589 - 3595
  • [33] VarCLR: Variable Semantic Representation Pre-training via Contrastive Learning
    Chen, Qibin
    Lacomis, Jeremy
    Schwartz, Edward J.
    Neubig, Graham
    Vasilescu, Bogdan
    Le Goues, Claire
    2022 ACM/IEEE 44TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING (ICSE 2022), 2022, : 2327 - 2339
  • [34] Dense Contrastive Learning for Self-Supervised Visual Pre-Training
    Wang, Xinlong
    Zhang, Rufeng
    Shen, Chunhua
    Kong, Tao
    Li, Lei
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 3023 - 3032
  • [35] Exploring the Role of Monolingual Data in Cross-Attention Pre-training for Neural Machine Translation
    Khang Pham
    Long Nguyen
    Dien Dinh
    COMPUTATIONAL COLLECTIVE INTELLIGENCE, ICCCI 2023, 2023, 14162 : 179 - 190
  • [36] Does Masked Language Model Pre-training with Artificial Data Improve Low-resource Neural Machine Translation?
    Tamura, Hiroto
    Hirasawa, Tosho
    Kim, Hwichan
    Komachi, Mamoru
    17TH CONFERENCE OF THE EUROPEAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, EACL 2023, 2023, : 2216 - 2225
  • [37] Language Model Pre-training Method in Machine Translation Based on Named Entity Recognition
    Li, Zhen
    Qu, Dan
    Xie, Chaojie
    Zhang, Wenlin
    Li, Yanxia
    INTERNATIONAL JOURNAL ON ARTIFICIAL INTELLIGENCE TOOLS, 2020, 29 (7-8)
  • [38] A Multi-view Molecular Pre-training with Generative Contrastive Learning
    Liu, Yunwu
    Zhang, Ruisheng
    Yuan, Yongna
    Ma, Jun
    Li, Tongfeng
    Yu, Zhixuan
    INTERDISCIPLINARY SCIENCES-COMPUTATIONAL LIFE SCIENCES, 2024, 16 (03) : 741 - 754
  • [39] From Bilingual to Multilingual Neural Machine Translation by Incremental Training
    Escolano, Carlos
    Costa-Jussa, Marta R.
    Fonollosa, Jose A. R.
    57TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2019:): STUDENT RESEARCH WORKSHOP, 2019, : 236 - 242
  • [40] Contrastive Pre-Training of GNNs on Heterogeneous Graphs
    Jiang, Xunqiang
    Lu, Yuanfu
    Fang, Yuan
    Shi, Chuan
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, CIKM 2021, 2021, : 803 - 812