Experimental study on pullout behaviour of basalt fiber-reinforced polymers minibar embedded in ultra-high performance seawater sea-sand concrete

被引:24
|
作者
Jiang, Kaidi [1 ,2 ]
Wang, Xin [1 ,2 ]
Ding, Lining [3 ]
Chen, Zhiyuan [1 ,2 ]
Liu, Jianxun [1 ,2 ]
Wu, Zhishen [1 ,2 ]
机构
[1] Southeast Univ, Key Lab C & PC Struct, Minist Educ, Nanjing 210096, Peoples R China
[2] Southeast Univ, Natl & Local Unified Engn Res Ctr Basalt Fiber Pro, Nanjing 210096, Peoples R China
[3] Nanjing Forestry Univ, Sch Civil Engn, Nanjing 210037, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Bond property; Ultra-high-performance concrete; Seawater and sea sand; Surface texture; Constituent content; MECHANICAL-PROPERTIES; FINE AGGREGATE; OYSTER SHELL; OUT BEHAVIOR; BOND SLIP; STRENGTH; MICROSTRUCTURE; SHAPE;
D O I
10.1016/j.jobe.2023.106160
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Pullout tests were conducted on 150 specimens to characterize the bond behaviours of ecofriendly basalt fiber-reinforced polymer minibars (MB) embedded in ultra-high performance seawater sea-sand concrete (UHP-SSC). The experimental variables comprised surface textures of MB (straight and twisted), constituent contents of crushed seashell (SH), and coarse aggregate (CA) in UHP-SSC. The microstructures and surface morphologies of the UHP-SSC matrix and MB were characterized by low-field nuclear magnetic resonance (LF-NMR) and scanning electron microscopy (SEM). A constitutive model for the pullout load-slip relationships was proposed. Experimental results showed that the increments in the bond strength and energy absorption capability provided by twisted MB were more than twice those provided by straight MB, resulting from the additional mechanical anchorage. The acceptable content of SH in sea sand is less than 5% since it could enhance bond strength by 6%, while significant contents show opposite effects. Incorporating CA decreased the interfacial bond behaviours between MB and UHP-SSC, especially with a high volume fraction exceeding 10%. The microscopic observations and pore structures consisted of the evolution of bond behaviours and clarified the corresponding mechanism. The proposed constitutive model considering SH and CA content fits well with the experimental data with relevant regression coefficients over 0.89.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Effect of alkalinity on the shear performance degradation of basalt fiber-reinforced polymer bars in simulated seawater sea sand concrete environment
    Yi, Yong
    Guo, Shuaicheng
    Li, Sheng
    Rahman, Md Zillur
    Zhou, Linlin
    Shi, Caijun
    Zhu, Deju
    CONSTRUCTION AND BUILDING MATERIALS, 2021, 299
  • [42] Tensile Creep Test of Fiber-Reinforced Ultra-High Performance Concrete
    Garas, Victor Y.
    Kahn, Lawrence F.
    Kurtis, Kimberly E.
    JOURNAL OF TESTING AND EVALUATION, 2010, 38 (06) : 674 - 682
  • [43] Flexural toughness of hybrid fiber-reinforced ultra-high performance concrete
    Deng Z.
    Xue H.
    Harbin Gongcheng Daxue Xuebao/Journal of Harbin Engineering University, 2023, 44 (08): : 1288 - 1294
  • [44] Shear behavior of fiber-reinforced ultra-high performance concrete beams
    Meszoely, Tamas
    Randl, Norbert
    ENGINEERING STRUCTURES, 2018, 168 : 119 - 127
  • [45] French Standards for Ultra-High Performance Fiber-Reinforced Concrete (UHPFRC)
    Toutlemonde, Francois
    Kretz, Thierry
    Genereux, Gregory
    Resplendino, Jacques
    Pillard, Wilfried
    Guerinet, Michel
    Rougeau, Patrick
    HIGH TECH CONCRETE: WHERE TECHNOLOGY AND ENGINEERING MEET, 2018, : 1601 - 1609
  • [46] Fiber-reinforced ultra-high performance concrete under tensile loads
    Millon, O.
    Riedel, W.
    Thoma, K.
    Fehling, E.
    Noeldgen, M.
    DYMAT 2009: 9TH INTERNATIONAL CONFERENCE ON THE MECHANICAL AND PHYSICAL BEHAVIOUR OF MATERIALS UNDER DYNAMIC LOADING, VOL 1, 2009, : 671 - +
  • [47] Strengthening of Reinforced Concrete Columns Using Ultra-High Performance Fiber-Reinforced Concrete Jacket
    Shehab, Hamdy
    Eisa, Ahmed
    Wahba, Ahmed Mohamed
    Sabol, Peter
    Katunsky, Dusan
    BUILDINGS, 2023, 13 (08)
  • [48] Experimental study on bending performance of ultra high performance fiber-reinforced concrete slab
    Yu Z.
    Wang B.
    An M.
    Jianzhu Jiegou Xuebao/Journal of Building Structures, 2019, 40 (09): : 131 - 139
  • [49] Experimental study on the effects of glass fibres and expansive agent on the bond behaviour of glass/basalt FRP bars in seawater sea-sand concrete
    Xiong, Z.
    Zeng, Y.
    Li, L. G.
    Kwan, A. K. H.
    He, S. H.
    CONSTRUCTION AND BUILDING MATERIALS, 2021, 274
  • [50] Mechanical performance and structural application of a novel basalt-fiber-reinforced ultra-high-performance seawater-sea-sand concrete (UHPSSC) with basalt coarse aggregate
    Sun, Xiaoyan
    Liu, Jingrui
    Zhao, Weijian
    Wang, Hailong
    Yang, Yuanzhang
    STRUCTURAL CONCRETE, 2024,