Estimation of the bandwidth parameter in Nadaraya-Watson kernel non-parametric regression based on universal threshold level

被引:2
|
作者
Ali, Taha Hussein [1 ]
Hayawi, Heyam Abd Al-Majeed [2 ]
Botani, Delshad Shaker Ismael [1 ]
机构
[1] Salahaddin Univ, Coll Adm & Econ, Dept Stat & Informat, Erbil, Kurdistan Regio, Iraq
[2] Univ Mosul, Coll Comp & Math Sci, Dept Stat & Informat, Mosul, Iraq
关键词
Bandwidth parameter; Non-parametric regression; NW kernel estimator; Universal threshold;
D O I
10.1080/03610918.2021.1884719
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper proposes a new improvement of the Nadaraya-Watson kernel non-parametric regression estimator and the bandwidth of this new improvement is obtained depending on universal threshold level with wavelet of kernel function instead of using fixed bandwidth and variable bandwidth for geometric, arithmetic mean, range and median measurements. A simulation study is presented, including comparisons between the proposed method and five others Nadaraya-Watson kernel estimators (classical methods), as well as using real data depending on a program written in MATLAB language which was designed for this purpose. It was concluded that the proposed method is more accurate than all classical methods for all simulations and real data based on MSE criterion.
引用
收藏
页码:1476 / 1489
页数:14
相关论文
共 31 条
  • [1] COMPARISON OF GEOMETRIC AND ARITHMETIC MEANS FOR BANDWIDTH SELECTION IN NADARAYA-WATSON KERNEL REGRESSION ESTIMATOR
    Xu, Li-Yuan
    Zhang, Min
    Zhu, Wei
    He, Yu-Lin
    [J]. PROCEEDINGS OF 2013 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS (ICMLC), VOLS 1-4, 2013, : 999 - 1004
  • [2] A Non-Linear Function Approximation From Small Samples Based on Nadaraya-Watson Kernel Regression
    Shapiai, Mohd Ibrahim
    Ibrahim, Zuwairie
    Khalid, Marzuki
    Jau, Lee Wen
    Pavlovich, Vladimir
    [J]. 2010 SECOND INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE, COMMUNICATION SYSTEMS AND NETWORKS (CICSYN), 2010, : 28 - 32
  • [3] An Improved Nadaraya-Watson Kernel Regression Method Based on Cross Validation for Small Samples
    Zhou, Yuqing
    Li, Fengping
    Li, Pei
    Zhou, Hongming
    Xue, Wei
    Hu, Wenchao
    [J]. INTERNATIONAL JOINT CONFERENCE ON APPLIED MATHEMATICS, STATISTICS AND PUBLIC ADMINISTRATION (AMSPA 2014), 2014, : 162 - 168
  • [4] Bayesian Kernel Regression for Noisy Inputs Based on Nadaraya-Watson Estimator Constructed from Noiseless Training Data
    Hanafusa, Ryo
    Okadome, Takeshi
    [J]. ADVANCES IN DATA SCIENCE AND ADAPTIVE ANALYSIS, 2020, 12 (01)
  • [5] Adaptive Nadaraya-Watson kernel regression estimators utilizing some non-traditional and robust measures: a numerical application of British food data
    Shahzad, Usman
    Ahmad, Ishfaq
    Almanjahie, Ibrahim Mufrah
    Al-Noor, Nadia H.
    Hanif, Muhammad
    [J]. HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2023, 52 (05): : 1 - 13
  • [6] Supervised non-parametric discretization based on Kernel density estimation
    Luis Flores, Jose
    Calvo, Borja
    Perez, Aritz
    [J]. PATTERN RECOGNITION LETTERS, 2019, 128 : 496 - 504
  • [7] Regional forecasting of PM2.5 concentrations: A novel model based on the empirical orthogonal function analysis and Nadaraya-Watson kernel regression estimator
    Xie, Kang
    Meng, Fangxiu
    Zhang, Dongdong
    [J]. ENVIRONMENTAL MODELLING & SOFTWARE, 2023, 170
  • [8] NON-PARAMETRIC KERNEL DENSITY ESTIMATION AND ANALYSIS OF GUANGDONG OFFSHORE WIND POWER OUTPUT BASED ON OPTIMAL BANDWIDTH
    Rao, Zhi
    Wang, Ke
    Tan, Junfeng
    Li, Jiaming
    Yang, Zaimin
    Meng, Wenchuan
    [J]. Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2023, 44 (12): : 274 - 282
  • [9] Non-parametric kernel-based estimation and simulation of precipitation amount
    Pavlides, Andrew
    Agou, Vasiliki D.
    Hristopulos, Dionissios T.
    [J]. JOURNAL OF HYDROLOGY, 2022, 612
  • [10] Non-Parametric Sequential Estimation of a Regression Function Based on Dependent Observations
    Politis, Dimitris N.
    Vasiliev, Vyacheslav A.
    [J]. SEQUENTIAL ANALYSIS-DESIGN METHODS AND APPLICATIONS, 2013, 32 (03): : 243 - 266