FedGAMMA: Federated Learning With Global Sharpness-Aware Minimization

被引:3
|
作者
Dai, Rong [1 ]
Yang, Xun [1 ]
Sun, Yan [2 ]
Shen, Li [3 ]
Tian, Xinmei [1 ]
Wang, Meng [4 ]
Zhang, Yongdong [1 ]
机构
[1] Univ Sci & Technol China, Sch Informat Sci & Technol, Hefei 230026, Peoples R China
[2] Univ Sydney, Sch Comp Sci, Sydney, NSW 2008, Australia
[3] JD Explore Acad, Beijing 100000, Peoples R China
[4] Hefei Univ Technol, Sch Comp Sci & Informat Engn, Hefei 230009, Peoples R China
基金
中国国家自然科学基金;
关键词
Client-drift; deep learning; distributed learning; federated learning (FL);
D O I
10.1109/TNNLS.2023.3304453
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Federated learning (FL) is a promising framework for privacy-preserving and distributed training with decentralized clients. However, there exists a large divergence between the collected local updates and the expected global update, which is known as the client drift and mainly caused by heterogeneous data distribution among clients, multiple local training steps, and partial client participation training. Most existing works tackle this challenge based on the empirical risk minimization (ERM) rule, while less attention has been paid to the relationship between the global loss landscape and the generalization ability. In this work, we propose FedGAMMA, a novel FL algorithm with Global sharpness-Aware MiniMizAtion to seek a global flat landscape with high performance. Specifically, in contrast to FedSAM which only seeks the local flatness and still suffers from performance degradation when facing the client-drift issue, we adopt a local varieties control technique to better align each client's local updates to alleviate the client drift and make each client heading toward the global flatness together. Finally, extensive experiments demonstrate that FedGAMMA can substantially outperform several existing FL baselines on various datasets, and it can well address the client-drift issue and simultaneously seek a smoother and flatter global landscape.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 50 条
  • [21] CR-SAM: Curvature Regularized Sharpness-Aware Minimization
    Wu, Tao
    Luo, Tie
    Wunsch, Donald C., II
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 6, 2024, : 6144 - 6152
  • [22] Sharpness-Aware Minimization Leads to Low-Rank Features
    Andriushchenko, Maksym
    Bahri, Dara
    Mobahi, Hossein
    Flammarion, Nicolas
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [23] Make Sharpness-Aware Minimization Stronger: A Sparsified Perturbation Approach
    Mi, Peng
    Shen, Li
    Ren, Tianhe
    Zhou, Yiyi
    Sun, Xiaoshuai
    Ji, Rongrong
    Tao, Dacheng
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [24] ASAM: Adaptive Sharpness-Aware Minimization for Scale-Invariant Learning of Deep Neural Networks
    Kwon, Jungmin
    Kim, Jeongseop
    Park, Hyunseo
    Choi, In Kwon
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [25] Why Does Sharpness-Aware Minimization Generalize Better Than SGD?
    Chen, Zixiang
    Zhang, Junkai
    Kou, Yiwen
    Chen, Xiangning
    Hsieh, Cho-Jui
    Gu, Quanquan
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [26] A Retinal Vessel Segmentation Method Based on the Sharpness-Aware Minimization Model
    Mariam, Iqra
    Xue, Xiaorong
    Gadson, Kaleb
    SENSORS, 2024, 24 (13)
  • [27] Practical Sharpness-Aware Minimization Cannot Converge All the Way to Optima
    Si, Dongkuk
    Yun, Chulhee
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [28] Research on the improvement of domain generalization by the fusion of invariant features and sharpness-aware minimization
    Yixuan Yang
    Mingrong Dong
    Kai Zeng
    Tao Shen
    The Journal of Supercomputing, 2025, 81 (1)
  • [29] ImbSAM: A Closer Look at Sharpness-Aware Minimization in Class-Imbalanced Recognition
    Zhou, Yixuan
    Qu, Yi
    Xu, Xing
    Shen, Hengtao
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 11311 - 11321
  • [30] SALR: Sharpness-Aware Learning Rate Scheduler for Improved Generalization
    Yue, Xubo
    Nouiehed, Maher
    Al Kontar, Raed
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 35 (09) : 12518 - 12527