Leech extract alleviates idiopathic pulmonary fibrosis by TGF-β1/Smad3 signaling pathway

被引:2
|
作者
Zhang, Yin [1 ]
Lu, Yong-Bo [1 ]
Zhu, Wei-Jie [2 ]
Gong, Xiao-Xi [1 ]
Qian, Rui [1 ]
Lu, Yi-Jing [1 ]
Li, Yu [2 ]
Yao, Wei-Feng [1 ]
Bao, Bei-Hua [1 ]
Zhang, Yi [1 ]
Zhang, Li [1 ,3 ]
Cheng, Fang -Fang [1 ,3 ]
机构
[1] Nanjing Univ Chinese Med, Jiangsu Collaborat Innovat Ctr Chinese Med Resourc, Jiangsu Key Lab High Technol Res TCM Formulae, Natl & Local Collaborat Engn Ctr Chinese Med Resou, Nanjing 210023, Peoples R China
[2] Nanjing Univ Chinese Med, Sch Med & Holist Integrat Med, Nanjing 210023, Peoples R China
[3] Nanjing Univ Chinese Med, Jiangsu Key Lab High Technol Res TCM Formulae, 138 Xianlin Rd, Nanjing 210023, Peoples R China
基金
中国国家自然科学基金;
关键词
Leech; The leech extract group with molecular weight greater than 10 KDa; Idiopathic pulmonary fibrosis; TGF-beta 1/Smad3 signaling pathway; Pyruvate kinase M2; TGF-BETA; PYRUVATE-KINASE; REGULATOR; BLEOMYCIN; M2;
D O I
10.1016/j.jep.2024.117737
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Ethnopharmacological relevance: Leech, as a traditional Chinese medicine for the treatment of blood circulation and blood stasis, was also widely used to cure pulmonary fibrosis in China. In clinical practice, some traditional Chinese medicine preparation such as Shui Zhi Xuan Bi Hua Xian Tang and Shui Zhi Tong Luo Capsule composed of leech, could improve the clinical symptoms and pulmonary function in patients with idiopathic pulmonary fibrosis (IPF). However, the material basis of the leech in the treatment of IPF were not yet clear. Aim of the study: Screen out the components of leech that have the anti-pulmonary fibrosis effects, and further explore the therapeutic mechanism of the active components. Materials and methods: In this study, the different molecular weight components of leech extract samples were prepared using the semi-permeable membranes with different pore sizes. The therapeutic effects of the leech extract groups with molecular weight greater than 10 KDa (>10 KDa group), between 3 KDa and 10 KDa (3-10 KDa group), and less than 3 KDa (<3 KDa group) on pulmonary fibrosis were firstly investigated by cell proliferation and cytotoxicity assay (MTT), cell wound healing assay, immunofluorescence staining (IF) and Western blot (WB) assay through the TGF-beta 1-induced fibroblast cell model. Then bleomycin-induced pulmonary fibrosis (BML-induced PF) mouse model was constructed to investigate the pharmacological activities of the active component group of leech extract in vivo. Pathological changes of the mouse lung were observed by hematoxylineosin staining (H&E) and Masson's trichrome staining (Masson). The hydroxyproline (HYP) content of lung tissues was quantified by HYP detection kit. The levels of extracellular matrix-related fibronectin (FN) and collagen type I (Collagen I), pyruvate kinase M2 (PKM2) monomer and Smad7 protein were determined via WB method. PKM2 and Smad7 protein were further characterized by IF assays. Results: Using TGF-beta 1-induced HFL1 cell line as a PF cell model, the in vitro results demonstrated that the >10 KDa group could significantly inhibited the cell proliferation and migration, downregulated the expression level of cytoskeletal protein vimentin and alpha-smooth muscle actin (alpha-SMA), and reduced the deposition of FN and Collagen I. In the BML-induced PF mouse model, the >10 KDa group significantly reduced the content of HYP, downregulated the expression levels of FN and Collagen I in lung tissues, and delayed the pathological changes of lung tissue structure. The results of WB and IF assays further indicated that the >10 KDa group could up-regulate the expression level of PKM2 monomer and Smad7 protein in the cellular level, thereby delaying the progression of pulmonary fibrosis. Conclusions: Our study revealed that the >10 KDa group was the main material basis of the leech extract that inhibited pulmonary fibrosis through TGF-beta 1/Smad3 signaling pathway.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Eucommiae cortex extract alleviates renal fibrosis in CKD mice induced by adenine through the TGF-β1/Smad signaling pathway
    Jiang, Wenyi
    He, Zhengyou
    Yao, Ruijiao
    Xiao, Wenyan
    Chen, Zhiyang
    Zeng, Xia
    Zheng, Miao
    Wang, Jing
    Li, Jia
    Jiang, Yong
    JOURNAL OF NATURAL MEDICINES, 2025, 79 (01) : 170 - 179
  • [22] LEFTY2 alleviates hepatic stellate cell activation and liver fibrosis by regulating the TGF-β1/Smad3 pathway
    Yang, Ya-ru
    Bu, Fang-tian
    Yang, Yang
    Li, Hao
    Huang, Cheng
    Meng, Xiao-ming
    Zhang, Lei
    Lv, Xiong-wen
    Li, Jun
    MOLECULAR IMMUNOLOGY, 2020, 126 : 31 - 39
  • [23] Is TGF-β1/SMAD3 Signaling Differentially Modulated in Obesity?
    Woo, J.
    Karmacharya, N.
    Jude, J.
    Panettieri, R. A.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2021, 203 (09)
  • [24] USP7 Promotes TGF-β1 Signaling by De-Ubiquitinating Smad2/Smad3 in Pulmonary Fibrosis
    Tang, Fang
    Gong, Hongyan
    Ke, Tiantian
    Yang, Wenming
    Yang, Yuxuan
    Liu, Zhiyi
    DISCOVERY MEDICINE, 2024, 36 (187) : 1616 - 1626
  • [25] Astragaloside IV alleviates silica-induced pulmonary fibrosis via inactivation of the TGF-β1/Smad2/3 signaling pathway
    Li, Nannan
    Wu, Ke
    Feng, Feifei
    Wang, Lin
    Zhou, Xiang
    Wang, Wei
    INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE, 2021, 47 (03)
  • [26] TRPV4 Mediates Cardiac Fibrosis via the TGF-β1/Smad3 Signaling Pathway in Diabetic Rats
    Jia, Xiaoli
    Xiao, Chao
    Sheng, Deqiao
    Yang, Mengcheng
    Cheng, Quanyi
    Wu, Jing
    Zhang, Shizhong
    CARDIOVASCULAR TOXICOLOGY, 2020, 20 (05) : 492 - 499
  • [27] Hydrogen sulfide ameliorates rat myocardial fibrosis induced by hyperhomocysteinemia through TGF-β1/SMAD3 signaling pathway
    Yi, Jiali
    Liu, Shengquan
    Zheng, Xia
    Li, Yaling
    Nie, Liangui
    Wu, Qian
    Chen, Jian
    Zhang, Jingjing
    Chu, Chun
    Yang, Jun
    BASIC & CLINICAL PHARMACOLOGY & TOXICOLOGY, 2019, 125 : 9 - 10
  • [28] TRPV4 Mediates Cardiac Fibrosis via the TGF-β1/Smad3 Signaling Pathway in Diabetic Rats
    Xiaoli Jia
    Chao Xiao
    Deqiao Sheng
    Mengcheng Yang
    Quanyi Cheng
    Jing Wu
    Shizhong Zhang
    Cardiovascular Toxicology, 2020, 20 : 492 - 499
  • [29] Spleen Tyrosine Kinase (SYK) in the Progression of Peritoneal Fibrosis Through Activation of the TGF-β1/Smad3 Signaling Pathway
    Liu, Kang-Han
    Zhou, Nan
    Zou, Yan
    Yang, Yi-Ya
    OuYang, Sha-Xi
    Liang, Yu-Mei
    MEDICAL SCIENCE MONITOR, 2019, 25 : 9346 - 9356
  • [30] Alprostadil alleviates myocardial fibrosis in rats with diabetes mellitus through TGF-β1/Smad signaling pathway
    Li, Rongji
    Qi, Changliang
    Feng, Qian
    Ding, Peng
    Kang, Le
    Chi, Jinfeng
    MINERVA ENDOCRINOLOGICA, 2020, 45 (03) : 270 - 273