MULTI-CLASS CHANGE DETECTION USING POLARIMETRIC SAR DATA

被引:0
|
作者
Kim, Minhwa [1 ]
Oh, Junse [1 ]
Min, Byeong Woon [1 ]
Park, Sang-Eun [1 ,2 ]
机构
[1] Sejong Univ, Dept Energy & Mineral Resources Engn, 209 Neungdong Ro, Seoul 05006, South Korea
[2] Sejong Univ, Dept Geoinformat Engn, 209 Neungdong Ro, Seoul 05006, South Korea
关键词
Change detection; Classification; SAR; Radar polarimetry; Microwave scattering mechanism;
D O I
10.1109/IGARSS52108.2023.10281780
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Remote sensing, particularly Synthetic Aperture Radar (SAR) systems, has lots of operational advantages in continuous change monitoring with its all-weather, day and night imaging capability. In particular, the fully polarimetric SAR systems can offer a more efficient and reliable means of change monitoring by providing additional observations about the Earth's surface. Recently, previous change detection techniques using SAR data focus on detecting changed areas from non-changed areas. However, the utilization of microwave scattering information can offer complementary information on various scatterers and can be a potential capability in discriminating change types without in-situ information. Therefore, this study aims to propose a new multi- class change detection method based on the fusion of polarimetric features. The multi- class change detection results show that the proposed method can discriminate the various land cover type changes in terms of radar scattering mechanism.
引用
收藏
页码:7765 / 7768
页数:4
相关论文
共 50 条
  • [21] A CIRCULAR APPROACH TO MULTI-CLASS CHANGE DETECTION IN MULTITEMPORAL SENTINEL-1 SAR IMAGE TIME SERIES
    Bertoluzza, Manuel
    Bruzzone, Lorenzo
    Bovolo, Francesca
    [J]. IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 4201 - 4204
  • [22] UNSUPERVISED MULTI-CLASS CHANGE DETECTION IN BITEMPORAL MULTISPECTRAL IMAGES USING BAND EXPANSION
    Liu, Sicong
    Du, Qian
    Bruzzone, Lorenzo
    Samat, Alim
    Tong, Xiaohua
    [J]. IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 1910 - 1913
  • [23] Detection of oyster habitat in tidal flats using multi-frequency polarimetric SAR data
    Choe, Byung-Hun
    Kim, Duk-jin
    Hwang, Ji-Hwan
    Oh, Yisok
    Moon, Wooil M.
    [J]. ESTUARINE COASTAL AND SHELF SCIENCE, 2012, 97 : 28 - 37
  • [24] Multi-class WHMBoost: An ensemble algorithm for multi-class imbalanced data
    Zhao, Jiakun
    Jin, Ju
    Zhang, Yibo
    Zhang, Ruifeng
    Chen, Si
    [J]. INTELLIGENT DATA ANALYSIS, 2022, 26 (03) : 599 - 614
  • [25] Multi-class change detection of remote sensing images based on class rebalancing
    Tang, Huakang
    Wang, Honglei
    Zhang, Xiaoping
    [J]. INTERNATIONAL JOURNAL OF DIGITAL EARTH, 2022, 15 (01) : 1377 - 1394
  • [26] SAR imagery classification using multi-class support vector machines
    Angiulli, G
    Barrile, V
    Cacciola, M
    [J]. JOURNAL OF ELECTROMAGNETIC WAVES AND APPLICATIONS, 2005, 19 (14) : 1865 - 1872
  • [27] Polarimetric Interferometric SAR Change Detection Discrimination
    West, R. Derek
    Riley, Robert M.
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (06): : 3091 - 3104
  • [28] SAR polarimetric change detection for flooded vegetation
    Brisco, B.
    Schmitt, A.
    Murnaghan, K.
    Kaya, S.
    Roth, A.
    [J]. INTERNATIONAL JOURNAL OF DIGITAL EARTH, 2013, 6 (02) : 103 - 114
  • [29] Multi-class Classification of EEG Spectral Data for Artifact Detection
    Tokovarov, Mikhail
    Plechawska-Wojcik, Malgorzata
    Kaczorowska, Monika
    [J]. ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING, ICAISC 2019, PT II, 2019, 11509 : 305 - 316
  • [30] Polarization State Conformation and Its Application to Change Detection in Polarimetric SAR Data
    Qong, Muhtar
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2004, 1 (04) : 304 - 308