A Survey on Automatic Delineation of Radiotherapy Target Volume based on Machine Learning

被引:0
|
作者
Tao, Zhenchao [1 ,2 ,3 ]
Lyu, Shengfei [3 ]
机构
[1] Univ Sci & Technol China, Sch Data Sci, Hefei 230026, Anhui, Peoples R China
[2] Univ Sci & Technol China, Affiliated Hosp USTC 1, Sch Life Sci & Med, Hefei 230031, Peoples R China
[3] Nanyang Technol Univ, Singapore 639798, Singapore
关键词
Automatic delineation; Machine learning; Radiotherapy target volume; Medical image matching; Cancer; CONVOLUTIONAL NEURAL-NETWORK; ATLAS-BASED SEGMENTATION; IMAGE REGISTRATION; INTEROBSERVER VARIABILITY; RADIATION-THERAPY; AUTO-SEGMENTATION; BRAIN-STEM; CANCER; ORGANS; CT;
D O I
10.1162/dint_a_00204
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Radiotherapy is one of the main treatment methods for cancer, and the delineation of the radiotherapy target area is the basis and premise of precise treatment. Artificial intelligence technology represented by machine learning has done a lot of research in this area, improving the accuracy and efficiency of target delineation. This article will review the applications and research of machine learning in medical image matching, normal organ delineation and treatment target delineation according to the procudures of doctors to delineate the target volume, and give an outlook on the development prospects.
引用
收藏
页码:841 / 856
页数:16
相关论文
共 50 条
  • [1] Evaluation of Nasopharyngeal Carcinoma Clinical Target Volume Automatic Delineation Based on Recurrence Regions in Radiotherapy
    Ou, X.
    Wang, J.
    Yan, W.
    Wei, Z.
    Jia, L. C.
    Wang, Y.
    Hui, C.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2024, 120 (02): : E779 - E779
  • [2] Automatic delineation of the clinical target volume and organs at risk by deep learning for rectal cancer postoperative radiotherapy q
    Song, Ying
    Hu, Junjie
    Wu, Qiang
    Xu, Feng
    Nie, Shihong
    Zhao, Yaqin
    Bai, Sen
    Yi, Zhang
    RADIOTHERAPY AND ONCOLOGY, 2020, 145 : 186 - 192
  • [3] Advances in automatic delineation of target volume and cardiac substructure in breast cancer radiotherapy (Review)
    Shen, Jingjing
    Gu, Peihua
    Wang, Yun
    Wang, Zhongming
    ONCOLOGY LETTERS, 2023, 25 (03)
  • [4] Clinical target volume delineation for radiotherapy of the esophagus
    Lazarescu, I.
    Thureau, S.
    Nkhali, L.
    Pradier, O.
    Dubray, B.
    CANCER RADIOTHERAPIE, 2013, 17 (5-6): : 453 - 460
  • [5] GTV Based Automatic Delineation of Clinical Target Volume for Cervical Cancer
    Mao, X.
    Mao, S.
    Lu, S.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2023, 117 (02): : E694 - E694
  • [6] Clinical target volume (CTV) automatic delineation using deep learning network for cervical cancer radiotherapy: A study with external validation
    Wu, Zhe
    Wang, Dong
    Xu, Cheng
    Peng, Shengxian
    Deng, Lihua
    Liu, Mujun
    Wu, Yi
    JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, 2025, 26 (01):
  • [7] ARENA: Improving training in target volume delineation for radiotherapy
    Evans, E.
    Piazzese, C.
    Spezi, E.
    Staffurth, J.
    Gwynne, S.
    RADIOTHERAPY AND ONCOLOGY, 2019, 133 : S896 - S897
  • [8] New developments in Mill for target volume delineation in radiotherapy
    Khoo, V. S.
    Joon, D. L.
    BRITISH JOURNAL OF RADIOLOGY, 2006, 79 : S2 - S15
  • [9] Radiotherapy for cervix carcinomas: Clinical target volume delineation
    Gnep, K.
    Mazeron, R.
    CANCER RADIOTHERAPIE, 2013, 17 (5-6): : 486 - 492
  • [10] Delineation of clinical target volume and organs at risk in cervical cancer radiotherapy by deep learning networks
    Tian, Miao
    Wang, Hongqiu
    Liu, Xingang
    Ye, Yuyun
    Ouyang, Ganlu
    Shen, Yali
    Li, Zhiping
    Wang, Xin
    Wu, Shaozhi
    MEDICAL PHYSICS, 2023, 50 (10) : 6354 - 6365