Armoring of MgO by a Passivation Layer Impedes Direct Air Capture of CO2

被引:5
|
作者
Weber, Juliane [1 ]
Starchenko, Vitalii [1 ]
Yuan, Ke [1 ]
Anovitz, Lawrence M. [1 ]
Ievlev, Anton V. [2 ]
Unocic, Raymond R. [2 ]
Borisevich, Albina Y. [2 ]
Boebinger, Matthew G. [2 ]
Stack, Andrew G. [1 ]
机构
[1] Oak Ridge Natl Lab, Chem Sci Div, Oak Ridge, TN 37830 USA
[2] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37830 USA
关键词
direct air capture; decarbonization; carboncapture; separation; MgO; BRUCITE CARBONATION; CRYSTAL-STRUCTURE; MINERALS; LANSFORDITE; TEMPERATURE; DIFFUSION; PRESSURE; GROWTH;
D O I
10.1021/acs.est.3c04690
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
It has been proposed to use magnesium oxide (MgO) to separate carbon dioxide directly from the atmosphere at the gigaton level. We show experimental results on MgO single crystals reacting with the atmosphere for longer (decades) and shorter (days to months) periods with the goal of gauging reaction rates. Here, we find a substantial slowdown of an initially fast reaction as a result of mineral armoring by reaction products (surface passivation). In short-term experiments, we observe fast hydroxylation, carbonation, and formation of amorphous hydrated magnesium carbonate at early stages, leading to the formation of crystalline hydrated Mg carbonates. The preferential location of Mg carbonates along the atomic steps on the crystal surface of MgO indicates the importance of the reactive site density for carbonation kinetics. The analysis of 27-year-old single-crystal MgO samples demonstrates that the thickness of the reacted layer is limited to similar to 1.5 mu m on average, which is thinner than expected and indicates surface passivation. Thus, if MgO is to be employed for direct air capture of CO2, surface passivation must be circumvented.
引用
收藏
页码:14929 / 14937
页数:9
相关论文
共 50 条
  • [1] CO2 Capture from Air (Direct Air Capture: DAC)
    [J]. Journal of the Institute of Electrical Engineers of Japan, 2023, 143 (02): : 94 - 97
  • [2] Pricing CO2 Direct Air Capture
    Sutherland, Brandon R.
    [J]. JOULE, 2019, 3 (07) : 1571 - 1573
  • [3] Direct Air Capture of CO2 by Physisorbent Materials
    Kumar, Amrit
    Madden, David G.
    Lusi, Matteo
    Chen, Kai-Jie
    Daniels, Emma A.
    Curtin, Teresa
    Perry, John J.
    Zaworotko, Michael J.
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2015, 54 (48) : 14372 - 14377
  • [4] Review of CO2 direct air capture adsorbents
    Wang T.
    Dong H.
    Hou C.-L.
    Wang X.-R.
    [J]. Zhejiang Daxue Xuebao (Gongxue Ban)/Journal of Zhejiang University (Engineering Science), 2022, 56 (03): : 462 - 475
  • [5] Direct capture and separation of CO2 from air
    Teong, Siew Ping
    Zhang, Yugen
    [J]. GREEN ENERGY & ENVIRONMENT, 2024, 9 (03) : 413 - 416
  • [6] Direct Air Capture of CO2 Using Solvents
    Custelcean, Radu
    [J]. ANNUAL REVIEW OF CHEMICAL AND BIOMOLECULAR ENGINEERING, 2022, 13 : 217 - 234
  • [7] Sorption direct air capture with CO2 utilization
    Jiang, L.
    Liu, W.
    Wang, R. Q.
    Gonzalez-Diaz, A.
    Rojas-Michaga, M. F.
    Michailos, S.
    Pourkashanian, M.
    Zhang, X. J.
    Font-Palma, C.
    [J]. PROGRESS IN ENERGY AND COMBUSTION SCIENCE, 2023, 95
  • [8] Pyrrolizidines for direct air capture and CO2 conversion
    Hanusch, Jan M.
    Kerschgens, Isabel P.
    Huber, Florian
    Neuburger, Markus
    Gademann, Karl
    [J]. CHEMICAL COMMUNICATIONS, 2019, 55 (07) : 949 - 952
  • [9] Direct capture and separation of CO2 from air
    Siew Ping Teong
    Yugen Zhang
    [J]. Green Energy & Environment, 2024, 9 (03) : 413 - 416
  • [10] Direct Capture of CO2 from Ambient Air
    Sanz-Perez, Eloy S.
    Murdock, Christopher R.
    Didas, Stephanie A.
    Jones, Christopher W.
    [J]. CHEMICAL REVIEWS, 2016, 116 (19) : 11840 - 11876