Edge-hosted CoFeB active sites with graphene nanosheets for highly selective nitrogen reduction reaction towards ambient ammonia synthesis

被引:8
|
作者
Arif, Muhammad [1 ,2 ]
Kumar, Anuj [3 ,11 ]
Mushtaq, Muhammad Asim [4 ]
Azhar, Umair [1 ]
Sagir, Muhammad [1 ]
Tahir, Muhammad Bilal [5 ,10 ]
Talib, Unaiza [6 ]
Ajmal, Saira [4 ]
Alotaibi, Khalid M. [7 ]
Yasin, Ghulam [4 ,8 ,9 ]
机构
[1] Khwaja Fareed Univ Engn & Informat Technol, Inst Chem & Environm Engn, Rahim Yar Khan 64200, Punjab, Pakistan
[2] Khwaja Fareed Univ Engn & Informat Technol, Ctr Thermal & Renewable Energy Res, Rahim Yar Khan 64200, Punjab, Pakistan
[3] GLA Univ, Dept Chem, Nanotechnol Res Lab, Mathura 281406, Uttar Pradesh, India
[4] Shenzhen Univ, Inst Adv Study, Shenzhen 518060, Guangdong, Peoples R China
[5] Khwaja Fareed Univ Engn & Informat Technol, Inst Phys, Rahim Yar Khan 64200, Punjab, Pakistan
[6] Khwaja Fareed Univ Engn & Informat Technol, Inst Chem, Rahim Yar Khan, Punjab, Pakistan
[7] King Saud Univ, Dept Chem, Riyadh 11451, Saudi Arabia
[8] Tianjin Univ, Sch Environm Sci & Engn, Tianjin 300350, Peoples R China
[9] Dongguan Univ Technol, Sch Environm & Civil Engn, Dongguan 523808, Guangdong, Peoples R China
[10] Khwaja Fareed Univ Engn & Informat Technol, Ctr Innovat Mat Res, Rahim Yar Khan 64200, Punjab, Pakistan
[11] GLA Univ, Dept Chem, Nanotechnol Res Lab, Mathura 281406, Uttar Pradesh, India
基金
中国国家自然科学基金;
关键词
Electrocatalysis; Enfolded and interconnected micro/; nanostructures; CoFeB@rGO heterostructures; Nitrogen reduction reaction; NH; 3; synthesis; pH universal; DOPED GRAPHENE; N-2; NANOPARTICLES; EFFICIENT; ELECTROCATALYSTS; NH3;
D O I
10.1016/j.cej.2023.145368
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Electrocatalytic nitrogen reduction reaction (NRR) offers a suitable alternative to the conventional high energy intensive Haber-Bosch process for ambient ammonia (NH3) production without the release of greenhouse gases. Herein, a chemical reduction method is employed to effectively fabricate a hierarchical 3D nanostructure composed of CoFeB nanospheres precisely enveloped and interconnected with dynamically adaptable reduced graphene oxide (rGO) nanosheets for electrocatalytic NRR. Interconnected 3D CoFeB@ rGO nanostructures selectively reduced gaseous N2 to NH3 and demonstrated high Faradaic efficiency (31.6%) and NH3 yield rate (35 & mu;g h-1 mg-1) at - 0.2 V in 0.05 M H2SO4, comparable to various state-of-the-art electrocatalytic materials for ambient NRR. Density functional theory (DFT) simulations additionally verify that interconnected CoFeB nanospheres with mechanically flexible graphene nanosheets are beneficial in lowering the energy threshold for N2 adsorption and successive protonation. First example of CoFeB@rGO heterostructures as electrocatalysts for high efficiency, pH-universal NRR to NH3 synthesis is highlighted in this study.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Nitrogen-doped porous carbon nanosheets made from biomass as highly active electrocatalyst for oxygen reduction reaction
    Pan, Fuping
    Cao, Zhongyue
    Zhao, Qiuping
    Liang, Hongyu
    Zhang, Junyan
    JOURNAL OF POWER SOURCES, 2014, 272 : 8 - 15
  • [22] Nitrogen-doped porous carbon nanosheets made from biomass as highly active electrocatalyst for oxygen reduction reaction
    State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
    不详
    J Power Sources, (8-15):
  • [23] Enhancing the rate of electrochemical nitrogen reduction reaction for ammonia synthesis under ambient conditions using hollow gold nanocages
    Nazemi, Mohammadreza
    Panikkanvalappil, Sajanlal R.
    El-Sayed, Mostafa A.
    NANO ENERGY, 2018, 49 : 316 - 323
  • [24] Thermally Controlled Construction of Fe-Nx Active Sites on the Edge of a Graphene Nanoribbon for an Electrocatalytic Oxygen Reduction Reaction
    Matsumoto, Koki
    Onoda, Akira
    Kitano, Tomoyuki
    Sakata, Takao
    Yasuda, Hidehiro
    Campidelli, Stephane
    Hayashi, Takashi
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (13) : 15101 - 15112
  • [25] Nitrogen-doped ordered mesoporous carbon: synthesis and active sites for electrocatalysis of oxygen reduction reaction
    Wan, Kai
    Long, Gui-Fa
    Liu, Ming-Yao
    Du, Li
    Liang, Zhen-Xing
    Tsiakaras, Panagiotis
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2015, 165 : 566 - 571
  • [26] Probing the Interaction between Nitrogen Dopants and Edge Structures of Doped Graphene Catalysts for the Highly Efficient Oxygen Reduction Reaction
    Jiang, Shangkun
    Zhang, Zhongyi
    Yang, Na
    Li, Li
    Wei, Zidong
    JOURNAL OF PHYSICAL CHEMISTRY C, 2022, 126 (45): : 19113 - 19121
  • [27] Highly active sites of NiVB nanoparticles dispersed onto graphene nanosheets towards efficient and pH-universal overall water splitting
    Arif, Muhammad
    Yasin, Ghulam
    Shakeel, Muhammad
    Mushtaq, Muhammad Asim
    Ye, Wen
    Fang, Xiaoyu
    Ji, Shengfu
    Yan, Dongpeng
    JOURNAL OF ENERGY CHEMISTRY, 2021, 58 : 237 - 246
  • [28] Dry ice-mediated rational synthesis of edge-carboxylated crumpled graphene nanosheets for selective and prompt hydrolysis of cellulose and eucalyptus lignocellulose under ambient reaction conditions
    Abdu, Hassan Idris
    Eid, Kamel
    Abdullah, Aboubakr M.
    Sliem, Mostafa H.
    Elzatahry, Ahmed
    Lu, Xiaoquan
    GREEN CHEMISTRY, 2020, 22 (16) : 5437 - 5446
  • [29] Highly active sites of NiVB nanoparticles dispersed onto graphene nanosheets towards efficient and pH-universal overall water splitting
    Muhammad Arif
    Ghulam Yasin
    Muhammad Shakeel
    Muhammad Asim Mushtaq
    Wen Ye
    Xiaoyu Fang
    Shengfu Ji
    Dongpeng Yan
    Journal of Energy Chemistry , 2021, (07) : 237 - 246
  • [30] Cobalt, sulfur, nitrogen co-doped carbon as highly active electrocatalysts towards oxygen reduction reaction
    Shi, Shaojie
    Wang, Yifei
    Wang, Biaolong
    Wu, Fan
    Suo, Yange
    Zhang, Zhiguo
    Xu, Yousheng
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (92) : 39058 - 39069