A LIPSCHITZ VERSION OF DE RHAM THEOREM FOR Lp-COHOMOLOGY

被引:0
|
作者
Gol'dshtein, Vladimir [1 ]
Panenko, Roman [1 ]
机构
[1] Ben Gurion Univ Negev, Dept Math, POB 653, Beer Sheva, Israel
关键词
Key words and phrases. Differential forms; Lipschitz analysis; De Rham complex; Mollifier; Metric simplicial complex; Bounded geometry; De Rham theorem; Whitney form;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We focus our attention on the de Rham operators' underlying properties which are specified by intrinsic effects of differential geometry structures. And then we apply the procedure of regularization in the context of Lipschitz version of de Rham calculus on metric simplicial complexes with bounded geometry.
引用
收藏
页码:189 / 204
页数:16
相关论文
共 50 条
  • [31] The first Lp-cohomology of some groups with one end
    Puls, Michael J.
    ARCHIV DER MATHEMATIK, 2007, 88 (06) : 500 - 506
  • [32] de Rham and His Cohomology
    Popescu-Pampu, Patrick
    WHAT IS THE GENUS?, 2016, 2162 : 129 - 131
  • [33] Vanishing and non-vanishing for the first LP-cohomology of groups
    Bourdon, M
    Martin, F
    Valette, A
    COMMENTARII MATHEMATICI HELVETICI, 2005, 80 (02) : 377 - 389
  • [34] A vanishing theorem for the tangential de Rham cohomology of a foliation with amenable fundamental groupoid
    Corlette, K
    Lamoneda, LH
    Iozzi, A
    GEOMETRIAE DEDICATA, 2004, 103 (01) : 205 - 223
  • [35] A Vanishing Theorem for the Tangential de Rham Cohomology of a Foliation with Amenable Fundamental Groupoid
    Kevin Corlette
    Luis Hernández Lamoneda
    Alessandra Iozzi
    Geometriae Dedicata, 2004, 103 : 205 - 223
  • [36] A Short Proof of the Holder-Poincare Duality for LP-Cohomology
    Gol'dshtein, Vladimir
    Troyanov, Marc
    RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA, 2010, 124 : 179 - 184
  • [37] Some applications of lp-cohomology to boundaries of Gromov hyperbolic spaces
    Bourdon, Marc
    Kleiner, Bruce
    GROUPS GEOMETRY AND DYNAMICS, 2015, 9 (02) : 435 - 478
  • [38] On a version of the de Rham theorem and an application to the Maxwell–Stokes type problem
    Junichi Aramaki
    The Journal of Analysis, 2021, 29 : 873 - 890
  • [39] de Rham cohomology of local cohomology modules II
    Puthenpurakal, Tony J.
    Reddy, Rakesh B. T.
    BEITRAGE ZUR ALGEBRA UND GEOMETRIE-CONTRIBUTIONS TO ALGEBRA AND GEOMETRY, 2019, 60 (01): : 77 - 94
  • [40] Cyclic cohomology of coalgebras, coderivations and de Rham cohomology
    Farinati, MA
    Solotar, A
    HOPF ALGEBRAS AND QUANTUM GROUPS, PROCEEDINGS, 2000, 209 : 105 - 129