S-shaped grey wolf optimizer-based FOX algorithm for feature selection

被引:9
|
作者
Feda, Afi Kekeli [1 ]
Adegboye, Moyosore [2 ]
Adegboye, Oluwatayomi Rereloluwa [3 ]
Agyekum, Ephraim Bonah [4 ]
Mbasso, Wulfran Fendzi [5 ]
Kamel, Salah [6 ]
机构
[1] European Univ Lefke, Management Informat Syst Dept, Mersin 10, Lefke, Turkiye
[2] Univ Pittsburgh, Sch Comp & Informat, Pittsburgh, PA USA
[3] Univ Mediterranean Karpasia, Management Informat Syst, Mersin 10, Nicosia, Turkiye
[4] Ural Fed Univ, Dept Nucl & Renewable Energy, 19 Mira St, Ekaterinburg 620002, Russia
[5] Univ Douala, Univ Inst Technol, Lab Technol & Appl Sci, POB 8698, Douala, Cameroon
[6] Aswan Univ, Fac Engn, Dept Elect Engn, Aswan 81542, Egypt
关键词
Feature selection; S-Shaped transfer function; FOX algorithm; PERIODIC-SOLUTION; HARMONY;
D O I
10.1016/j.heliyon.2024.e24192
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The FOX algorithm is a recently developed metaheuristic approach inspired by the behavior of foxes in their natural habitat. While the FOX algorithm exhibits commendable performance, its basic version, in complex problem scenarios, may become trapped in local optima, failing to identify the optimal solution due to its weak exploitation capabilities. This research addresses a high-dimensional feature selection problem. In feature selection, the most informative features are retained while discarding irrelevant ones. An enhanced version of the FOX algorithm is proposed, aiming to mitigate its drawbacks in feature selection. The improved approach referred to as S-shaped Grey Wolf Optimizer-based FOX (FOX-GWO), which focuses on augmenting the local search capabilities of the FOX algorithm via the integration of GWO. Additionally, the introduction of an S-shaped transfer function enables the population to explore both binary options throughout the search process. Through a series of experiments on 18 datasets with varying dimensions, FOX-GWO outperforms in 83.33 % of datasets for average accuracy, 61.11 % for reduced feature dimensionality, and 72.22 % for average fitness value across the 18 datasets. Meaning it efficiently explores high-dimensional spaces. These findings highlight its practical value and potential to advance feature selection in complex data analysis, enhancing model prediction accuracy.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Feature Selection of Grey Wolf Optimizer Based on Quantum Computing and Uncertain Symmetry Rough Set
    Zhao, Guobao
    Wang, Haiying
    Jia, Deli
    Wang, Quanbin
    SYMMETRY-BASEL, 2019, 11 (12):
  • [42] S-shaped and V-shaped gaining-sharing knowledge-based algorithm for feature selection
    Agrawal, Prachi
    Ganesh, Talari
    Oliva, Diego
    Mohamed, Ali Wagdy
    APPLIED INTELLIGENCE, 2022, 52 (01) : 81 - 112
  • [43] S-shaped and V-shaped gaining-sharing knowledge-based algorithm for feature selection
    Prachi Agrawal
    Talari Ganesh
    Diego Oliva
    Ali Wagdy Mohamed
    Applied Intelligence, 2022, 52 : 81 - 112
  • [44] Binary grey wolf optimizer with a novel population adaptation strategy for feature selection
    Wang, Dazhi
    Ji, Yanjing
    Wang, Hongfeng
    Huang, Min
    IET CONTROL THEORY AND APPLICATIONS, 2023, 17 (17): : 2313 - 2331
  • [45] An Excited Binary Grey Wolf Optimizer for Feature Selection in Highly Dimensional Datasets
    Segera, Davies
    Mbuthia, Mwangi
    Nyete, Abraham
    ICINCO: PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON INFORMATICS IN CONTROL, AUTOMATION AND ROBOTICS, 2020, : 125 - 133
  • [46] Binary Multi-Objective Grey Wolf Optimizer for Feature Selection in Classification
    Al-Tashi, Qasem
    Abdulkadir, Said Jadid
    Rais, Helmi Md
    Mirjalili, Seyedali
    Alhussian, Hitham
    Ragab, Mohammed G.
    Alqushaibi, Alawi
    IEEE Access, 2020, 8 : 106247 - 106263
  • [47] An Improved Binary Grey-Wolf Optimizer With Simulated Annealing for Feature Selection
    Abdel-Basset, Mohamed
    Sallam, Karam M.
    Mohamed, Reda
    Elgendi, Ibrahim
    Munasinghe, Kumudu
    Elkomy, Osama M.
    IEEE ACCESS, 2021, 9 : 139792 - 139822
  • [48] Chain hybrid feature selection algorithm based on improved Grey Wolf Optimization algorithm
    Bai, Xiaotong
    Zheng, Yuefeng
    Lu, Yang
    Shi, Yongtao
    PLOS ONE, 2024, 19 (10):
  • [49] Binary Multi-Objective Grey Wolf Optimizer for Feature Selection in Classification
    Al-Tashi, Qasem
    Abdulkadir, Said Jadid
    Rais, Helmi Md
    Mirjalili, Seyedali
    Alhussian, Hitham
    Ragab, Mohammed G.
    Alqushaibi, Alawi
    IEEE ACCESS, 2020, 8 : 106247 - 106263
  • [50] Multilevel Image Thresholding Selection Based on Grey Wolf Optimizer
    Koc, Ismail
    Baykan, Omer Kaan
    Babaoglu, Ismail
    JOURNAL OF POLYTECHNIC-POLITEKNIK DERGISI, 2018, 21 (04): : 841 - 847