A Survey of Underwater Acoustic Target Recognition Methods Based on Machine Learning

被引:29
|
作者
Luo, Xinwei [1 ]
Chen, Lu [1 ]
Zhou, Hanlu [1 ]
Cao, Hongli [1 ]
机构
[1] Southeast Univ, Key Lab Underwater Acoust Signal Proc, Minist Educ, Nanjing 210096, Peoples R China
基金
中国国家自然科学基金;
关键词
machine learning; UATR; underwater acoustic dataset; classification and recognition; NEURAL-NETWORKS; CLASSIFICATION; LOCALIZATION; FEATURES;
D O I
10.3390/jmse11020384
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
Underwater acoustic target recognition (UATR) technology has been implemented widely in the fields of marine biodiversity detection, marine search and rescue, and seabed mapping, providing an essential basis for human marine economic and military activities. With the rapid development of machine-learning-based technology in the acoustics field, these methods receive wide attention and display a potential impact on UATR problems. This paper reviews current UATR methods based on machine learning. We focus mostly, but not solely, on the recognition of target-radiated noise from passive sonar. First, we provide an overview of the underwater acoustic acquisition and recognition process and briefly introduce the classical acoustic signal feature extraction methods. In this paper, recognition methods for UATR are classified based on the machine learning algorithms used as UATR technologies using statistical learning methods, UATR methods based on deep learning models, and transfer learning and data augmentation technologies for UATR. Finally, the challenges of UATR based on the machine learning method are summarized and directions for UATR development in the future are put forward.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Feature Extraction of Underwater Acoustic Signal Target Using Machine Learning Technique
    Ashok, P.
    Latha, B.
    TRAITEMENT DU SIGNAL, 2024, 41 (03) : 1303 - 1314
  • [32] A Robust Feature Extraction Method for Underwater Acoustic Target Recognition Based on Multi-Task Learning
    Li, Daihui
    Liu, Feng
    Shen, Tongsheng
    Chen, Liang
    Zhao, Dexin
    ELECTRONICS, 2023, 12 (07)
  • [33] A Novel Underwater Acoustic Target Recognition Method Based on MFCC and RACNN
    Liu, Dali
    Yang, Hongyuan
    Hou, Weimin
    Wang, Baozhu
    SENSORS, 2024, 24 (01)
  • [34] Underwater Acoustic Target Recognition Based on Data Augmentation and Residual CNN
    Yao, Qihai
    Wang, Yong
    Yang, Yixin
    ELECTRONICS, 2023, 12 (05)
  • [35] Underwater Acoustic Target Recognition Based on Gammatone Filterbank and Instantaneous Frequency
    Lian, Zixu
    Xu, Ke
    Wan, Jianwei
    Li, Gang
    Chen, Yong
    2017 IEEE 9TH INTERNATIONAL CONFERENCE ON COMMUNICATION SOFTWARE AND NETWORKS (ICCSN), 2017, : 1207 - 1211
  • [36] Underwater Acoustic Target Recognition Algorithm Based on Generative Adversarial Networks
    Xue L.
    Zeng X.
    Yang S.
    Binggong Xuebao/Acta Armamentarii, 2021, 42 (11): : 2444 - 2452
  • [37] Underwater acoustic target recognition based on automatic feature and contrastive coding
    Sun, Baogui
    Luo, Xinwei
    IET RADAR SONAR AND NAVIGATION, 2023, 17 (08): : 1277 - 1285
  • [38] Underwater acoustic target recognition method based on a joint neural network
    Han, Xing Cheng
    Ren, Chenxi
    Wang, Liming
    Bai, Yunjiao
    PLOS ONE, 2022, 17 (04):
  • [39] An Underwater Acoustic Target Recognition Method Based on Spectrograms with Different Resolutions
    Luo, Xinwei
    Zhang, Minghong
    Liu, Ting
    Huang, Ming
    Xu, Xiaogang
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2021, 9 (11)
  • [40] MACHINE LEARNING FOR UNDERWATER ACOUSTIC COMMUNICATIONS
    Huang, Lihuan
    Wang, Yue
    Zhang, Qunfei
    Han, Jing
    Tan, Weijie
    Tian, Zhi
    IEEE WIRELESS COMMUNICATIONS, 2022, 29 (03) : 102 - 108