Self-Supervised Feature Enhancement: Applying Internal Pretext Task to Supervised Learning

被引:1
|
作者
Xie, Tianshu [1 ]
Yang, Yuhang [2 ]
Ding, Zilin [2 ]
Cheng, Xuan [2 ]
Wang, Xiaomin [2 ]
Gong, Haigang [2 ]
Liu, Ming [2 ,3 ]
机构
[1] Univ Elect Sci & Technol China, Yangtze Delta Reg Inst Quzhou, Quzhou 324003, Peoples R China
[2] Univ Elect Sci & Technol China, Sch Comp Sci & Engn, Chengdu 611731, Peoples R China
[3] Wenzhou Med Univ, Quzhou Affiliated Hosp, Quzhou Peoples Hosp, Quzhou 324000, Peoples R China
关键词
Task analysis; Training; Self-supervised learning; Visualization; Supervised learning; Semantics; Predictive models; Deep learning; classification; self-supervised learning; convolutional neural network; feature transformation;
D O I
10.1109/ACCESS.2022.3233104
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Traditional self-supervised learning requires convolutional neural networks (CNNs) using external pretext tasks (i.e., image- or video-based tasks) to encode high-level semantic visual representations. In this paper, we show that feature transformations within CNNs can also be regarded as supervisory signals to construct the self-supervised task, called internal pretext task. And such a task can be applied for the enhancement of supervised learning. Specifically, we first transform the internal feature maps by discarding different channels, and then define an additional internal pretext task to identify the discarded channels. CNNs are trained to predict the joint labels generated by the combination of self-supervised labels and original labels. By doing so, we let CNNs know which channels are missing while classifying in the hope to mine richer feature information. Extensive experiments show that our approach is effective on various models and datasets. And it's worth noting that we only incur negligible computational overhead. Furthermore, our approach can also be compatible with other methods to get better results.
引用
收藏
页码:1708 / 1717
页数:10
相关论文
共 50 条
  • [41] Continual Robot Learning Using Self-Supervised Task Inference
    Hafez, Muhammad Burhan
    Wermter, Stefan
    IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, 2024, 16 (03) : 947 - 960
  • [42] Self-Supervised Learning for Recommendation
    Huang, Chao
    Xia, Lianghao
    Wang, Xiang
    He, Xiangnan
    Yin, Dawei
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022, 2022, : 5136 - 5139
  • [43] Credal Self-Supervised Learning
    Lienen, Julian
    Huellermeier, Eyke
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [44] Self-supervised learning model
    Saga, Kazushie
    Sugasaka, Tamami
    Sekiguchi, Minoru
    Fujitsu Scientific and Technical Journal, 1993, 29 (03): : 209 - 216
  • [45] Longitudinal self-supervised learning
    Zhao, Qingyu
    Liu, Zixuan
    Adeli, Ehsan
    Pohl, Kilian M.
    MEDICAL IMAGE ANALYSIS, 2021, 71
  • [46] Toward Understanding the Feature Learning Process of Self-supervised Contrastive Learning
    Wen, Zixin
    Li, Yuanzhi
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [47] Self-Supervised Learning for Electroencephalography
    Rafiei, Mohammad H.
    Gauthier, Lynne V.
    Adeli, Hojjat
    Takabi, Daniel
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (02) : 1457 - 1471
  • [48] COMBINING SELF-SUPERVISED AND SUPERVISED LEARNING WITH NOISY LABELS
    Zhang, Yongqi
    Zhang, Hui
    Yao, Quanming
    Wan, Jun
    2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2023, : 605 - 609
  • [49] A self-supervised learning of semantic feature consistency for image clustering
    Chen, Junfen
    Han, Jie
    Xie, Bojun
    Li, Nana
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2023, 45 (05) : 8651 - 8661
  • [50] Quantum self-supervised learning
    Jaderberg, B.
    Anderson, L. W.
    Xie, W.
    Albanie, S.
    Kiffner, M.
    Jaksch, D.
    QUANTUM SCIENCE AND TECHNOLOGY, 2022, 7 (03):