RENAL CYST DETECTION IN ABDOMINAL MRI IMAGES USING DEEP LEARNING SEGMENTATION

被引:0
|
作者
Sowmiya, S. [1 ]
Snehalatha, U. [1 ,2 ]
Murugan, Jayanth [3 ]
机构
[1] SRM Inst Sci & Technol, Coll Engn & Technol, Dept Biomed Engn, Kattankulathur, Tamil Nadu, India
[2] Batangas State Univ, Coll Engn Architecture & Fine Arts, Batangas City, Philippines
[3] SRM Med Coll Hosp & Res Ctr Potheri, Dept Radiodiag, Kattankulathur, Tamil Nadu, India
关键词
U-net segmentation; GLCM; Blob analysis; A renal cyst; MRI;
D O I
10.4015/S1016237223500229
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Renal cysts are categorized as simple cysts and complex cysts. Simple cysts are harmless and complicated cysts are cancerous and leading to a dangerous situation. The study aims to implement a deep learning-based segmentation that uses the Renal images to segment the cyst, detecting the size of the cyst and assessing the state of cyst from the infected renal image. The automated method for segmenting renal cysts from MRI abdominal images is based on a U-net algorithm. The deep learning-based segmentation like U-net algorithm segmented the renal cyst. The characteristics of the segmented cyst were analyzed using the Statistical features extracted using GLCM algorithm. The machine learning classification is performed using the extracted GLCM features. Three machine learning classifiers such as Naive Bayes, Hoeffding Tree and SVM are used in the proposed study. Naive Bayes and Hoeffding Tree achieved the highest accuracy of 98%. The SVM classifier achieved 96% of accuracy. This study proposed a new system to diagnose the renal cyst from MRI abdomen images. Our study focused on cyst segmentation, size detection, feature extraction and classification. The three-classification method suits best for classifying the renal cyst. Naive Bayes and Hoeffding Tree classifier achieved the highest accuracy. The diameter of cyst size is measured using the blobs analysis method to predict the renal cyst at an earlier stage. Hence, the deep learning-based segmentation performed well in segmenting the renal cyst and the three classifiers achieved the highest accuracy, above 95%.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Deep learning for brain metastasis detection and segmentation in longitudinal MRI data
    Huang, Yixing
    Bert, Christoph
    Sommer, Philipp
    Frey, Benjamin
    Gaipl, Udo
    Distel, Luitpold, V
    Weissmann, Thomas
    Uder, Michael
    Schmidt, Manuel A.
    Dorfler, Arnd
    Maier, Andreas
    Fietkau, Rainer
    Putz, Florian
    MEDICAL PHYSICS, 2022, 49 (09) : 5773 - 5786
  • [42] Deep learning techniques for the fully automated detection and segmentation of brain MRI
    Tamer, Ahmed
    Youssef, Ahmed
    Ibrahim, Mohammed
    Abd-El Aziz, Mostafa
    Hesham, Youssef
    Mohammed, Zeyad
    Eissa, M. M.
    Ahmed, Soha
    Khoriba, Ghada
    5TH INTERNATIONAL CONFERENCE ON COMPUTING AND INFORMATICS (ICCI 2022), 2022, : 310 - 315
  • [43] TBI LESION SEGMENTATION FROM MRI USING DEEP LEARNING
    Roy, Snehashis
    Butman, John
    Chan, Leighton
    Dzung Pham
    JOURNAL OF NEUROTRAUMA, 2018, 35 (16) : A152 - A152
  • [44] Deep learning for the automatic detection and segmentation of parotid gland tumors on MRI
    Zhang, Rongli
    So, Tiffany Y.
    Cai, Zongyou
    Deng, Qiao
    Tsang, Yip Man
    Ai, Qi Yong H.
    King, Ann D.
    ORAL ONCOLOGY, 2024, 152
  • [45] Automatic Segmentation of the Trigeminal Nerve on MRI Using Deep Learning
    Mulford, K.
    Ndoro, S.
    Moen, S.
    Watanabe, Y.
    van de Moortele, P. F.
    MEDICAL PHYSICS, 2020, 47 (06) : E584 - E584
  • [46] STREET LIGHT SEGMENTATION IN SATELLITE IMAGES USING DEEP LEARNING
    Teixeira, Ana Claudia
    Carneiro, Gabriel
    Filipe, Vitor
    Cunha, Antonio
    Sousa, Joaquim J.
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 6862 - 6865
  • [47] Semantic segmentation of multispectral photoacoustic images using deep learning
    Schellenberg, Melanie
    Dreher, Kris K.
    Holzwarth, Niklas
    Isensee, Fabian
    Reinke, Annika
    Schreck, Nicholas
    Seitel, Alexander
    Tizabi, Minu D.
    Maier-Hein, Lena
    Groehl, Janek
    PHOTOACOUSTICS, 2022, 26
  • [48] Melanoma Segmentation and Classification in Clinical Images Using Deep Learning
    Ge, Yunhao
    Li, Bin
    Zhao, Yanzheng
    Guan, Enguang
    Yan, Weixin
    PROCEEDINGS OF 2018 10TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND COMPUTING (ICMLC 2018), 2018, : 252 - 256
  • [49] Deep Learning for Hemorrhagic Lesion Detection and Segmentation on Brain CT Images
    Li, Lu
    Wei, Meng
    Liu, Bo
    Atchaneeyasakul, Kunakorn
    Zhou, Fugen
    Pan, Zehao
    Kumar, Shimran A.
    Zhang, Jason Y.
    Pu, Yuehua
    Liebeskind, David S.
    Scalzo, Fabien
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2021, 25 (05) : 1646 - 1659
  • [50] Automatic Prostate Segmentation using Deep Learning and MR Images
    Yuan, Y.
    Qin, W.
    Buyyounouski, M. K.
    Hancock, S. L.
    Bagshaw, H. P.
    Han, B.
    Xing, L.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2018, 102 (03): : E379 - E379