Hyperdimensional Feature Fusion for Out-of-Distribution Detection

被引:5
|
作者
Wilson, Samuel [1 ]
Fischer, Tobias [1 ]
Sunderhauf, Niko [1 ]
Dayoub, Feras [2 ]
机构
[1] Queensland Univ Technol, 2 George St, Brisbane, Qld 4000, Australia
[2] Univ Adelaide, North Terrace, Adelaide, SA 5005, Australia
基金
澳大利亚研究理事会;
关键词
D O I
10.1109/WACV56688.2023.00267
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We introduce powerful ideas from Hyperdimensional Computing into the challenging field of Out-of-Distribution (OOD) detection. In contrast to most existing works that perform OOD detection based on only a single layer of a neural network, we use similarity-preserving semi-orthogonal projection matrices to project the feature maps from multiple layers into a common vector space. By repeatedly applying the bundling operation., we create expressive classspecific descriptor vectors for all in-distribution classes. At test time, a simple and efficient cosine similarity calculation between descriptor vectors consistently identifies OOD samples with competitive performance to the current stateof-the-art whilst being significantly faster. We show that our method is orthogonal to recent state-of-the-art OOD detectors and can be combined with them to further improve upon the performance.
引用
收藏
页码:2643 / 2653
页数:11
相关论文
共 50 条
  • [21] Exploring the Limits of Out-of-Distribution Detection
    Fort, Stanislav
    Ren, Jie
    Lakshminarayanan, Balaji
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [22] On Risk Assessment for Out-of-Distribution Detection
    Vasiliuk, Anton
    IEEE ACCESS, 2025, 13 : 18546 - 18568
  • [23] Semantic enhanced for out-of-distribution detection
    Jiang, Weijie
    Yu, Yuanlong
    FRONTIERS IN NEUROROBOTICS, 2022, 16
  • [24] Unsupervised evaluation for out-of-distribution detection
    Zhang, Yuhang
    Hu, Jiani
    Wen, Dongchao
    Deng, Weihong
    PATTERN RECOGNITION, 2025, 160
  • [25] Likelihood Ratios for Out-of-Distribution Detection
    Ren, Jie
    Liu, Peter J.
    Fertig, Emily
    Snoek, Jasper
    Poplin, Ryan
    DePristo, Mark A.
    Dillon, Joshua V.
    Lakshminarayanan, Balaji
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [26] Generalized Out-of-Distribution Detection: A Survey
    Yang, Jingkang
    Zhou, Kaiyang
    Li, Yixuan
    Liu, Ziwei
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2024, 132 (12) : 5635 - 5662
  • [27] Semantically Coherent Out-of-Distribution Detection
    Yang, Jingkang
    Wang, Haoqi
    Feng, Litong
    Yan, Xiaopeng
    Zheng, Huabin
    Zhang, Wayne
    Liub, Ziwei
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 8281 - 8289
  • [28] Out-of-Distribution Detection Based on Multiple Metrics Fusion of Network Hidden Features
    Zhu, Qiuyu
    He, Yiwei
    IEEE ACCESS, 2024, 12 : 145450 - 145458
  • [29] In or Out? Fixing ImageNet Out-of-Distribution Detection Evaluation
    Bitterwolf, Julian
    Mueller, Maximilian
    Hein, Matthias
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 202, 2023, 202
  • [30] On the Importance of Feature Separability in Predicting Out-Of-Distribution Error
    Xie, Renchunzi
    Wei, Hongxin
    Feng, Lei
    Cao, Yuzhou
    An, Bo
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,