A review on prediction of diabetes using machine learning and data mining classification techniques

被引:6
|
作者
Pati, Abhilash [1 ]
Parhi, Manoranjan [1 ]
Pattanayak, Binod Kumar [1 ]
机构
[1] Siksha O Anusandhan Deemed Univ, Dept Comp Sci & Engn, Bhubaneswar, Odisha, India
关键词
diabetes mellitus; prediction; machine learning; ML; data mining; DM; classification techniques; PERFORMANCE ANALYSIS; MELLITUS;
D O I
10.1504/IJBET.2023.128514
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Machine learning (ML) and data mining (DM) techniques have grown in popularity among researchers and scientists in various fields. The healthcare industry could not be an exception to it. Diabetes or diabetes mellitus, a gaggle of metabolic disorder, can be caused due to age, obesity, lack of exercise, hereditary diabetes, living style, bad diet, hypertension, etc. and for that, the entire body system can be affected harmfully and be susceptible to dangerous diseases like heart disease, kidney disease, stroke, eye problem, nerve damage, etc. For this, we tried to go for a systematic review on diabetes by applying ML and DM classification algorithms for prediction and diagnosis. Concerning the sort of knowledge, medical datasets as well as Pima Indian Diabetes Datasets (PIDDs) provided by the UCI-ML Repository were mainly used. This survey may be useful for further investigation in predictions and resulting valuable knowledge on diabetes.
引用
收藏
页码:83 / 109
页数:28
相关论文
共 50 条
  • [21] Classification and prediction of diabetes disease using machine learning paradigm
    Maniruzzaman, Md.
    Rahman, Md. Jahanur
    Ahammed, Benojir
    Abedin, Md. Menhazul
    HEALTH INFORMATION SCIENCE AND SYSTEMS, 2020, 8 (01)
  • [22] Classification and prediction of diabetes disease using machine learning paradigm
    Md. Maniruzzaman
    Md. Jahanur Rahman
    Benojir Ahammed
    Md. Menhazul Abedin
    Health Information Science and Systems, 8
  • [23] Political Opinion Mining for Popularity Prediction using Machine Learning Techniques
    Dharani Devi, G.
    Hemalatha, R.
    Pradeep, R.
    Jagan, G.
    2023 IEEE International Conference on Research Methodologies in Knowledge Management, Artificial Intelligence and Telecommunication Engineering, RMKMATE 2023, 2023,
  • [24] A Review on Consumer Behavior Prediction using Data Mining Techniques
    Kareena
    Kapoor, Nitika
    PROCEEDINGS OF THE 2019 6TH INTERNATIONAL CONFERENCE ON COMPUTING FOR SUSTAINABLE GLOBAL DEVELOPMENT (INDIACOM), 2019, : 1089 - 1093
  • [25] Prediction of Heart Disease Using Classification Based Data Mining Techniques
    Joshi, Sujata
    Nair, Mydhili K.
    COMPUTATIONAL INTELLIGENCE IN DATA MINING, VOL 2, 2015, 32 : 503 - 511
  • [26] Voting Classification-Based Diabetes Mellitus Prediction Using Hypertuned Machine-Learning Techniques
    Mushtaq, Zaigham
    Ramzan, Muhammad Farhan
    Ali, Sikandar
    Baseer, Samad
    Samad, Ali
    Husnain, Mujtaba
    MOBILE INFORMATION SYSTEMS, 2022, 2022
  • [27] CLASSIFICATION OF RAIL SWITCH DATA USING MACHINE LEARNING TECHNIQUES
    Bryan, Kaylen J.
    Solomon, Mitchell
    Jensen, Emily
    Coley, Christina
    Rajan, Kailas
    Tian, Charlie
    Mijatovic, Nenad
    Kiss, James M.
    Lamoureux, Benjamin
    Dersin, Pierre
    Smith, Anthony O.
    Peter, Adrian M.
    PROCEEDINGS OF THE ASME JOINT RAIL CONFERENCE, 2018, 2018,
  • [28] Using machine learning techniques for exploration and classification of laboratory data
    Trulson, Inga
    Holdenrieder, Stefan
    Hoffmann, Georg
    JOURNAL OF LABORATORY MEDICINE, 2024,
  • [29] Classification of rocks radionuclide data using machine learning techniques
    Khan, Abdul Razzaq
    Mir, Adil Aslam
    Saeed, Sharjil
    Rafique, Muhammad
    Asim, Khawaja M.
    Iqbal, Talat
    Jabbar, Abdul
    Rahman, Saeed Ur
    ACTA GEOPHYSICA, 2018, 66 (05) : 1073 - 1079
  • [30] Review of bankruptcy prediction using machine learning and deep learning techniques
    Qu, Yi
    Quan, Pei
    Lei, Minglong
    Shi, Yong
    7TH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY AND QUANTITATIVE MANAGEMENT (ITQM 2019): INFORMATION TECHNOLOGY AND QUANTITATIVE MANAGEMENT BASED ON ARTIFICIAL INTELLIGENCE, 2019, 162 : 895 - 899