Optimal Deep Transfer Learning Based Colorectal Cancer Detection and Classification Model

被引:2
|
作者
Ragab, Mahmoud [1 ,2 ,3 ]
Mahmoud, Maged Mostafa [4 ,5 ,6 ]
Asseri, Amer H. [2 ]
Choudhry, Hani [2 ,7 ]
Yacoub, Haitham A. [8 ]
机构
[1] King Abdulaziz Univ, Fac Comp & Informat Technol, Informat Technol Dept, Jeddah 21589, Saudi Arabia
[2] King Abdulaziz Univ, Ctr Artificial Intelligence Precis Med, Jeddah 21589, Saudi Arabia
[3] Al Azhar Univ, Fac Sci, Dept Math, Nasr City 11884, Cairo, Egypt
[4] King Abdulaziz Univ, King Fahd Med Res Ctr, Canc Biol Unit, Jeddah 21589, Saudi Arabia
[5] King Abdulaziz Univ, Fac Appl Med Sci, Dept Med Lab Sci, Jeddah 22252, Saudi Arabia
[6] Natl Res Ctr, Human Genet & Genome Res Inst, Dept Mol Genet & Enzymol, Cairo 12622, Egypt
[7] King Abdulaziz Univ, Fac Sci, Biochem Dept, Jeddah 21589, Saudi Arabia
[8] Natl Res Ctr, Biotechnol Res Inst, Cell Biol Dept, Giza 12622, Egypt
来源
CMC-COMPUTERS MATERIALS & CONTINUA | 2023年 / 74卷 / 02期
关键词
Colorectal cancer; deep transfer learning; slime mould algorithm; hyperparameter optimization; biomedical imaging;
D O I
10.32604/cmc.2023.031037
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Colorectal carcinoma (CRC) is one such dispersed cancer globally and also prominent one in causing cancer-based death. Conventionally, pathologists execute CRC diagnosis through visible scrutinizing under the microscope the resected tissue samples, stained and fixed through Haematoxylin and Eosin (H&E). The advancement of graphical processing systems has resulted in high potentiality for deep learning (DL) techniques in interpretating visual anatomy from high resolution medical images. This study develops a slime mould algorithm with deep transfer learning enabled colorectal cancer detection and classification (SMADTL-CCDC) algorithm. The presented SMADTL-CCDC technique intends to appropriately recog-nize the occurrence of colorectal cancer. To accomplish this, the SMADTL-CCDC model initially undergoes pre-processing to improve the input image quality. In addition, a dense-EfficientNet technique was employed to extract feature vectors from the pre-processed images. Moreover, SMA with Discrete Hopfield neural network (DHNN) method was applied for the recognition and classification of colorectal cancer. The utilization of SMA assists in appropriately selecting the parameters involved in the DHNN approach. A wide range of experiments was implemented on benchmark datasets to assess the classification performance. A comprehensive comparative study highlighted the better performance of the SMADTL-CDC model over the recent approaches.
引用
收藏
页码:3279 / 3295
页数:17
相关论文
共 50 条
  • [41] An Automated Deep Learning Based Muscular Dystrophy Detection and Classification Model
    Gopalakrishnan, T.
    Sudhakaran, Periakaruppan
    Ramya, K. C.
    Kumar, K. Sathesh
    Al-Wesabi, Fahd N.
    Alohali, Manal Abdullah
    Hilal, Anwer Mustafa
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 71 (01): : 305 - 320
  • [42] Deep learning-based classification model for botnet attack detection
    Ahmed, Abdulghani Ali
    Jabbar, Waheb A.
    Sadiq, Ali Safaa
    Patel, Hiran
    JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING, 2020, 13 (7) : 3457 - 3466
  • [43] Skin Cancer Classification using Deep Learning and Transfer Learning
    Hosny, Khalid M.
    Kassem, Mohamed A.
    Foaud, Mohamed M.
    2018 9TH CAIRO INTERNATIONAL BIOMEDICAL ENGINEERING CONFERENCE (CIBEC), 2018, : 90 - 93
  • [44] Deep Learning and Transfer Learning for Skin Cancer Segmentation and Classification
    Li, Lin
    Seo, Wonseok
    2021 IEEE 21ST INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOENGINEERING (IEEE BIBE 2021), 2021,
  • [45] Deep Learning Based Optimal Traffic Classification Model for Modern Wireless Networks
    Kumar, Putta Hemanth
    Samanta, Tuhina
    2022 IEEE 19TH INDIA COUNCIL INTERNATIONAL CONFERENCE, INDICON, 2022,
  • [46] Optimal IoT Based Improved Deep Learning Model for Medical Image Classification
    Balaji, Prasanalakshmi
    Revathi, B. Sri
    Gobinathan, Praveetha
    Shamsudheen, Shermin
    Vaiyapuri, Thavavel
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 73 (02): : 2275 - 2291
  • [47] RETRACTION: Detection and Classification of Colorectal Polyp Using Deep Learning
    Tanwar, S.
    Vijayalakshmi, S.
    Sabharwal, M.
    Kaur, M.
    AlZubi, A. A.
    Lee, H. N.
    BIOMED RESEARCH INTERNATIONAL, 2024, 2024
  • [48] Optimal Deep Stacked Sparse Autoencoder Based Osteosarcoma Detection and Classification Model
    Fakieh, Bahjat
    Al-Ghamdi, Abdullah S. Al-Malaise
    Ragab, Mahmoud
    HEALTHCARE, 2022, 10 (06)
  • [49] Transfer learning based histopathologic image classification for breast cancer detection
    Deniz, Erkan
    Sengur, Abdulkadir
    Kadiroglu, Zehra
    Guo, Yanhui
    Bajaj, Varun
    Budak, Umit
    HEALTH INFORMATION SCIENCE AND SYSTEMS, 2018, 6
  • [50] Deep transfer learning based model for colorectal cancer histopathology segmentation: A comparative study of deep pre-trained models
    Kassani, Sara Hosseinzadeh
    Kassani, Peyman Hosseinzadeh
    Wesolowski, Michal J.
    Schneider, Kevin A.
    Deters, Ralph
    INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS, 2022, 159