Controllable Chirality and Band Gap of Quantum Anomalous Hall Insulators

被引:12
|
作者
Xu, Zhiming [1 ]
Duan, Wenhui [1 ,2 ,3 ,4 ,5 ,6 ,7 ]
Xu, Yong [1 ,2 ,3 ,4 ]
机构
[1] Tsinghua Univ, State Key Lab Low Dimens Quantum Phys, Beijing 100084, Peoples R China
[2] Tencent Quantum Lab, Shenzhen 518057, Guangdong, Peoples R China
[3] Frontier Sci Ctr Quantum Informat, Beijing 100084, Peoples R China
[4] Collaborat Innovat Ctr Quantum Matter, Beijing 100084, Peoples R China
[5] Tsinghua Univ, Inst Adv Study, Beijing 100084, Peoples R China
[6] Beijing Acad Quantum Informat Sci, Beijing 100193, Peoples R China
[7] RIKEN Ctr Emergent Matter Sci CEMS, Wako, Saitama 3510198, Japan
基金
中国国家自然科学基金;
关键词
quantum anomalous Hall effect; Chern insulator; chirality; exchange interaction; spin-orbit coupling; CHERN INSULATOR; REALIZATION; STATE;
D O I
10.1021/acs.nanolett.2c04369
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Finding guiding principles to optimize properties of quantum anomalous Hall (QAH) insulators is of pivotal importance to fundamental science and applications. Here, we build a first-principles QAH material database of chirality and band gap, explore microscopic mechanisms determining the QAH material properties, and obtain a general physical picture that can help researchers comprehensively understand the QAH data. Our results reveal that the usually neglected Coulomb exchange is unexpectedly strong in a large class of QAH materials, which is the key to resolve experimental puzzles. Moreover, we identify simple indicators for property evaluation and suggest material design strategies to control QAH chirality and gap by tuning cooperative or competing contributions via magnetic codoping, heterostructuring, spin-orbit proximity, etc. The work is valuable to future research of magnetic topological physics and materials.
引用
收藏
页码:305 / 311
页数:7
相关论文
共 50 条
  • [21] Anomalous quantum Hall effect induced by disorder in topological insulators
    Raymond, Laurent
    Verga, Alberto D.
    Demion, Arnaud
    PHYSICAL REVIEW B, 2015, 92 (07)
  • [22] Prospect of quantum anomalous Hall and quantum spin Hall effect in doped kagome lattice Mott insulators
    Daniel Guterding
    Harald O. Jeschke
    Roser Valentí
    Scientific Reports, 6
  • [23] Prospect of quantum anomalous Hall and quantum spin Hall effect in doped kagome lattice Mott insulators
    Guterding, Daniel
    Jeschke, Harald O.
    Valenti, Roser
    SCIENTIFIC REPORTS, 2016, 6
  • [24] General nonlinear Hall current in magnetic insulators beyond the quantum anomalous Hall effect
    Daniel Kaplan
    Tobias Holder
    Binghai Yan
    Nature Communications, 14
  • [25] General nonlinear Hall current in magnetic insulators beyond the quantum anomalous Hall effect
    Kaplan, Daniel
    Holder, Tobias
    Yan, Binghai
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [26] Geometric effect on quantum anomalous Hall states in magnetic topological insulators
    Xing, Yanxia
    Xu, Fuming
    Sun, Qing-Feng
    Wang, Jian
    Yao, Yu-Gui
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2018, 30 (43)
  • [27] Nonmagnetic doping induced quantum anomalous Hall effect in topological insulators
    Qi, Shifei
    Gao, Ruiling
    Chang, Maozhi
    Hou, Tao
    Han, Yulei
    Qiao, Zhenhua
    PHYSICAL REVIEW B, 2020, 102 (08)
  • [28] Three-dimensional quantum anomalous Hall effect in ferromagnetic insulators
    Jin, Y. J.
    Wang, R.
    Xia, B. W.
    Zheng, B. B.
    Xu, H.
    PHYSICAL REVIEW B, 2018, 98 (08)
  • [29] Environmental Doping-Induced Degradation of the Quantum Anomalous Hall Insulators
    Tay, Han
    Zhao, Yi-Fan
    Zhou, Ling-Jie
    Zhang, Ruoxi
    Yan, Zi-Jie
    Zhuo, Deyi
    Chan, Moses H. W.
    Chang, Cui-Zu
    NANO LETTERS, 2023, 23 (03) : 1093 - 1099
  • [30] Demonstration of Dissipative Quasihelical Edge Transport in Quantum Anomalous Hall Insulators
    Wang, Shu-Wei
    Xiao, Di
    Dou, Ziwei
    Cao, Moda
    Zhao, Yi-Fan
    Samarth, Nitin
    Chang, Cui-Zu
    Connolly, Malcolm R.
    Smith, Charles G.
    PHYSICAL REVIEW LETTERS, 2020, 125 (12)