Controllable Chirality and Band Gap of Quantum Anomalous Hall Insulators

被引:12
|
作者
Xu, Zhiming [1 ]
Duan, Wenhui [1 ,2 ,3 ,4 ,5 ,6 ,7 ]
Xu, Yong [1 ,2 ,3 ,4 ]
机构
[1] Tsinghua Univ, State Key Lab Low Dimens Quantum Phys, Beijing 100084, Peoples R China
[2] Tencent Quantum Lab, Shenzhen 518057, Guangdong, Peoples R China
[3] Frontier Sci Ctr Quantum Informat, Beijing 100084, Peoples R China
[4] Collaborat Innovat Ctr Quantum Matter, Beijing 100084, Peoples R China
[5] Tsinghua Univ, Inst Adv Study, Beijing 100084, Peoples R China
[6] Beijing Acad Quantum Informat Sci, Beijing 100193, Peoples R China
[7] RIKEN Ctr Emergent Matter Sci CEMS, Wako, Saitama 3510198, Japan
基金
中国国家自然科学基金;
关键词
quantum anomalous Hall effect; Chern insulator; chirality; exchange interaction; spin-orbit coupling; CHERN INSULATOR; REALIZATION; STATE;
D O I
10.1021/acs.nanolett.2c04369
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Finding guiding principles to optimize properties of quantum anomalous Hall (QAH) insulators is of pivotal importance to fundamental science and applications. Here, we build a first-principles QAH material database of chirality and band gap, explore microscopic mechanisms determining the QAH material properties, and obtain a general physical picture that can help researchers comprehensively understand the QAH data. Our results reveal that the usually neglected Coulomb exchange is unexpectedly strong in a large class of QAH materials, which is the key to resolve experimental puzzles. Moreover, we identify simple indicators for property evaluation and suggest material design strategies to control QAH chirality and gap by tuning cooperative or competing contributions via magnetic codoping, heterostructuring, spin-orbit proximity, etc. The work is valuable to future research of magnetic topological physics and materials.
引用
收藏
页码:305 / 311
页数:7
相关论文
共 50 条
  • [1] Acoustic valley Hall topological insulators with controllable band gap
    Liang, Xiao
    Zhang, Zhi
    Chu, Jiaming
    Luo, Jiangxia
    Meng, Daxiang
    Zhou, Zhuo
    MATERIALS TODAY COMMUNICATIONS, 2024, 38
  • [2] Electrical switching of the edge current chirality in quantum anomalous Hall insulators
    Yuan W.
    Zhou L.-J.
    Yang K.
    Zhao Y.-F.
    Zhang R.
    Yan Z.
    Zhuo D.
    Mei R.
    Wang Y.
    Yi H.
    Chan M.H.W.
    Kayyalha M.
    Liu C.-X.
    Chang C.-Z.
    Nature Materials, 2024, 23 (01) : 58 - 64
  • [3] Unveiling the chirality of the quantum anomalous Hall effect
    Chen, Hongyu
    Jin, Yuanjun
    Yahyavi, Mohammad
    Belopolski, Ilya
    Shao, Sen
    Hou, Tao
    Wang, Naizhou
    Hsu, Chia-Hsiu
    Zhao, Yilin
    Yang, Bo
    Ma, Qiong
    Yin, Jia-Xin
    Xu, Su-Yang
    Gao, Wei-bo
    Chang, Guoqing
    PHYSICAL REVIEW B, 2024, 109 (12)
  • [4] Superconductivity in Doped Quantum Anomalous Hall Insulators
    Zheng, Yue
    Zhou, Tao
    JOURNAL OF SUPERCONDUCTIVITY AND NOVEL MAGNETISM, 2019, 32 (06) : 1639 - 1644
  • [5] Superconductivity in Doped Quantum Anomalous Hall Insulators
    Yue Zheng
    Tao Zhou
    Journal of Superconductivity and Novel Magnetism, 2019, 32 : 1639 - 1644
  • [6] Topological Insulators in Silicene: Quantum Hall, Quantum Spin Hall and Quantum Anomalous Hall Effects
    Ezawa, Motohiko
    PHYSICS OF SEMICONDUCTORS, 2013, 1566 : 199 - 200
  • [7] Intrinsic large gap quantum anomalous Hall insulators in LaX (X = Br,Cl,I)
    Dolui, Kapildeb
    Ray, Sujay
    Das, Tanmoy
    PHYSICAL REVIEW B, 2015, 92 (20):
  • [8] Magnetic topological insulators and quantum anomalous hall effect
    Kou, Xufeng
    Fan, Yabin
    Lang, Murong
    Upadhyaya, Pramey
    Wang, Kang L.
    SOLID STATE COMMUNICATIONS, 2015, 215 : 34 - 53
  • [9] Spin polarization in nanojunctions of quantum anomalous Hall insulators
    Cheraghchi, Hosein
    Sabze, Tahere
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2020, 513
  • [10] Quantum anomalous Hall effect in magnetic topological insulators
    Wang, Jing
    Lian, Biao
    Zhang, Shou-Cheng
    PHYSICA SCRIPTA, 2015, T164