Simultaneous SVM Parameters and Feature Selection Optimization Based on Improved Slime Mould Algorithm

被引:3
|
作者
Qiu, Yihui [1 ]
Li, Ruoyu [1 ]
Zhang, Xinqiang [1 ]
机构
[1] Xiamen Univ Technol, Coll Econ & Management, Xiamen 361024, Peoples R China
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Optimization; Classification algorithms; Feature extraction; Support vector machines; Metaheuristics; Convergence; Search problems; Parameter estimation; Feature selection; slime mould algorithm; support vector machine; parameter optimization; metaheuristic algorithm; PARTICLE SWARM OPTIMIZATION; GENE SELECTION; SEARCH;
D O I
10.1109/ACCESS.2024.3351943
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
To address the problems of low classification accuracy, redundancy of feature subsets, and performance susceptibility to parameters in wrapper-based feature selection in traditional Support Vector Machine (SVM), an improved Slime Mould Algorithm (ISMA) was proposed for simultaneous optimization of SVM parameters and feature selection. Firstly, an improved Slime Mould Algorithm with multi-strategy was proposed, which has higher convergence speed and accuracy than SMA. Based on the golden section coefficient, a new position updating formula was proposed, which accelerates the convergence speed of SMA and improves the local exploitation ability and convergence accuracy of SMA; based on the idea of Fitness-Distance Balance method, an adaptive lens-imaging learning strategy was proposed, which better balances the exploration and exploitation ability of SMA; the vertical crossover was used to expand the search range, thereby reducing the probability of the algorithm falling into the local optimum. Secondly, ISMA is verified on some standard test functions, CEC2017 test set functions and practical engineering optimization problems. The experimental results show that ISMA has higher solution accuracy, better stability and faster convergence speed, and has higher performance in practical engineering optimization problems. Finally, ISMA was applied to the feature selection process of SVM to optimize SVM and binary feature parameters at the same time, and this method is applied to the microarray gene expression classification problem. The simulation results of feature selection on 10 UCI data sets show that this method can achieve higher classification accuracy while effectively reducing the feature dimension, and the classification accuracy on 7 datasets is as high as 90% above, which reached 100% on 2 datasets. In addition, experiments on two cancer datasets show that this method has good application value in cancer diagnosis and classification.
引用
收藏
页码:18215 / 18236
页数:22
相关论文
共 50 条
  • [41] Simultaneous Feature with Support Vector Selection and Parameters Optimization Using GA-Based SVM Solve the Binary Classification
    Fei, Ye
    Min, Han
    2016 FIRST IEEE INTERNATIONAL CONFERENCE ON COMPUTER COMMUNICATION AND THE INTERNET (ICCCI 2016), 2016, : 426 - 433
  • [42] Simultaneous Feature Selection Optimization Based on Hybrid Sooty Tern Optimization Algorithm and Genetic Algorithm
    Jia H.-M.
    Li Y.
    Sun K.-J.
    Zidonghua Xuebao/Acta Automatica Sinica, 2022, 48 (06): : 1601 - 1615
  • [43] An Enhanced Fitness-Distance Balance Slime Mould Algorithm and Its Application in Feature Selection
    Bao, Haijia
    Du, Yu
    Li, Ya
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, PT I, KSEM 2023, 2023, 14117 : 164 - 178
  • [44] Enhanced feature selection technique using slime mould algorithm: a case study on chemical data
    Ewees, Ahmed A.
    Al-qaness, Mohammed A. A.
    Abualigah, Laith
    Algamal, Zakariya Yahya
    Oliva, Diego
    Yousri, Dalia
    Abd Elaziz, Mohamed
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (04): : 3307 - 3324
  • [45] A novel improved slime mould algorithm for engineering design
    Liu, Jingsen
    Fu, Yiwen
    Li, Yu
    Zhou, Huan
    SOFT COMPUTING, 2023, 27 (17) : 12181 - 12210
  • [46] Enhanced feature selection technique using slime mould algorithm: a case study on chemical data
    Ahmed A. Ewees
    Mohammed A. A. Al-qaness
    Laith Abualigah
    Zakariya Yahya Algamal
    Diego Oliva
    Dalia Yousri
    Mohamed Abd Elaziz
    Neural Computing and Applications, 2023, 35 : 3307 - 3324
  • [47] An Improved Elite Slime Mould Algorithm for Engineering Design
    Yuan, Li
    Ji, Jianping
    Liu, Xuegong
    Liu, Tong
    Chen, Huiling
    Chen, Deng
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2023, 137 (01): : 415 - 454
  • [48] An improved slime mould algorithm using multiple strategies
    Zhu, Mozhong
    Zhu, Rongkun
    Li, Feng
    Qiu, Jianxiang
    INTERNATIONAL JOURNAL OF PARALLEL EMERGENT AND DISTRIBUTED SYSTEMS, 2024, 39 (04) : 461 - 485
  • [49] A novel improved slime mould algorithm for engineering design
    Jingsen Liu
    Yiwen Fu
    Yu Li
    Huan Zhou
    Soft Computing, 2023, 27 : 12181 - 12210
  • [50] An effective method for global optimization - Improved slime mould algorithm combine multiple strategies
    Xiong, Wenqing
    Zhu, Donglin
    Li, Rui
    Yao, Yilin
    Zhou, Changjun
    Cheng, Shi
    EGYPTIAN INFORMATICS JOURNAL, 2024, 25