Boosting with fine-tuning for deep image denoising

被引:1
|
作者
Xie, Zhonghua [1 ]
Liu, Lingjun [1 ]
Wang, Cheng [2 ]
Chen, Zehong [1 ,3 ,4 ]
机构
[1] Huizhou Univ, Sch Comp Sci & Engn, Huizhou 516007, Peoples R China
[2] Huizhou Univ, Sch Math & Stat, Huizhou 516007, Peoples R China
[3] Guangdong Key Lab Intelligent Informat Proc, Shenzhen 518060, Peoples R China
[4] Shenzhen Key Lab Media Secur, Shenzhen 518060, Peoples R China
基金
中国国家自然科学基金;
关键词
Image denoising; Boosting; Plug-and-play priors; Deep neural network; Fine-tuning; ITERATIVE REGULARIZATION; RESTORATION; FRAMEWORK; DOMAIN;
D O I
10.1016/j.sigpro.2023.109356
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
While deep learning is ruling the image denoising domain in recent years, earlier works primarily focused on design of network architecture or training strategy. In this paper, we raise two questions: how to combine the advantages of traditional iterative methods and deep learning-based approaches, and how to avoid performance degradation caused by inaccurate modeling and estimation of noise. To answer the questions, we integrate recursive strategies and fine-tuning schemes to boost existing deep denoisers in a plug-and-play fashion. Specifically, based on the framework of plug-and-play priors, the image denoising problem is solved with the half quadratic splitting (HQS) algorithm to achieve iterative denoising. Different from the standard solving process, we develop a joint optimization scheme with regard to image restoration and network fine-tuning, realizing the matching between network and noise, thereby enabling better adaptation to the images contaminated by complex non-Gaussian noise. As such, two types of adaptive denoising boosters with convergence guarantee based on the fixed-point strategy and steepest-descent method are obtained. It is demonstrated in the experiments that the proposed schemes provide promising performance on additive white Gaussian noise (AWGN) and real-noise denoising for both supervised and self-supervised deep learning-based image denoising algorithms.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Forest Image Classification Based on Fine-Tuning CaffeNet
    Zhang G.
    Li Y.
    Wang H.
    Zhou H.
    Linye Kexue/Scientia Silvae Sinicae, 2020, 56 (10): : 121 - 128
  • [22] FINE-TUNING THE SIGNAL: IMAGE AND IDENTITY AT THE FEDERAL RESERVE
    Abolafia, Mitchel Y.
    Hatmaker, Deneen M.
    INTERNATIONAL PUBLIC MANAGEMENT JOURNAL, 2013, 16 (04) : 532 - 556
  • [23] Fine-tuning Image Transformers using Learnable Memory
    Sandler, Mark
    Zhmoginov, Andrey
    Vladymyrov, Max
    Jackson, Andrew
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, : 12145 - 12154
  • [24] Real-World Image Denoising with Deep Boosting
    Chen, Chang
    Xiong, Zhiwei
    Tian, Xinmei
    Zha, Zheng-Jun
    Wu, Feng
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2020, 42 (12) : 3071 - 3087
  • [25] FINE-TUNING FINE CHEMICALS
    ROYSE, S
    EUROPEAN CHEMICAL NEWS, 1995, 64 (1693): : 28 - &
  • [26] Vegetable Image Retrieval with Fine-tuning VGG Model and Image Hash
    Yang, Zhaolu
    Yue, Jun
    Li, Zhenbo
    Zhu, Ling
    IFAC PAPERSONLINE, 2018, 51 (17): : 280 - 285
  • [27] FOOD IMAGE RECOGNITION USING DEEP CONVOLUTIONAL NETWORK WITH PRE-TRAINING AND FINE-TUNING
    Yanai, Keiji
    Kawano, Yoshiyuki
    2015 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA & EXPO WORKSHOPS (ICMEW), 2015,
  • [28] Robustness Fine-Tuning Deep Learning Model for Cancers Diagnosis Based on Histopathology Image Analysis
    El-Ghany, Sameh Abd
    Azad, Mohammad
    Elmogy, Mohammed
    DIAGNOSTICS, 2023, 13 (04)
  • [29] Adaptive Denoising Autoencoders: A Fine-Tuning Scheme to Learn from Test Mixtures
    Kim, Minje
    Smaragdis, Paris
    LATENT VARIABLE ANALYSIS AND SIGNAL SEPARATION, LVA/ICA 2015, 2015, 9237 : 100 - 107
  • [30] Natural fine-tuning
    Saleem, Anjum
    Medina, Luisa
    Kunststoffe International, 2019, 109 (04): : 45 - 48