Triethylsilane introduced precursor engineering towards efficient and stable perovskite solar cells

被引:1
|
作者
Huang, Yuanmei [1 ,2 ]
Zhou, Wencai [1 ]
Zhong, Huaying [3 ]
Chen, Wei [4 ,5 ]
Yu, Guoping [1 ]
Zhang, Wenjie [4 ,5 ]
Wang, Shuanglin [1 ]
Sui, Yujie [1 ]
Yang, Xin [2 ]
Zhuang, Yu [2 ]
Tang, Jun [1 ]
Cao, Leifeng [4 ,5 ]
Mueller-Buschbaum, Peter [3 ,6 ]
Aierken, Abuduwayiti [2 ]
Han, Peigang [1 ]
Tang, Zeguo [1 ]
机构
[1] Shenzhen Technol Univ, Coll New Mat & New Energies, Lantian Rd 3002, Shenzhen 518118, Peoples R China
[2] Yunnan Normal Univ, Sch Energy & Environm, Juxian Rd 768, Kunming 650500, Peoples R China
[3] Tech Univ Munich, TUM Sch Nat Sci, Dept Phys, Chair Funct Mat, James Franck Str 1, D-85748 Garching, Germany
[4] Shenzhen Technol Univ, Ctr Adv Mat Diagnost Technol, Shenzhen Key Lab Ultraintense Laser & Adv Mat Tech, Shenzhen 518118, Peoples R China
[5] Shenzhen Technol Univ, Coll Engn Phys, Shenzhen 518118, Peoples R China
[6] Tech Univ Munich, Heinz Maier Leibnitz Zent MLZ, Lichtenbergstr 1, D-85748 Garching, Germany
关键词
Triethylsilane; Precursor engineering; Two-step method; Stability; METAL-HALIDE PEROVSKITES; DEPOSITION;
D O I
10.1016/j.mtadv.2023.100449
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Perovskite solar cells (PSCs) are believed to be optimistic for commercial deployment soon since the power conversion efficiency of PSCs presently reaches up to 26.10 % due to the intensive efforts these years. The two-step method is comparatively more suitable for scalable perovskite films, where lead halides and ammonium salts are prepared in separate precursors and deposited sequentially. Therefore, the reactivity between these two precursors governs the quality of final perovskite films and the intrinsic non-radiative recombination (NRR) at the perovskite's interfaces. Herein, we empowered both types of precursors, one by one and then simultaneously, with triethylsilane (TES) to investigate its effect on the (FAPbI3)1-x (MAPbBr3)x perovskite's morphological and optoelectronic properties. TES, with ethyl moieties and metalloid center, in ammonium salts delivers homoge-neous perovskites' crystals and inhibits the NRR of perovskite films by reducing the defects and trap states. As a result, the optimized devices exhibit not only improved device performance (particularly for the increased fill factors and open circuit voltages) but also enhanced stabilities.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Alternating precursor layer deposition for highly stable perovskite films towards efficient solar cells using vacuum deposition
    Yang, Dong
    Yang, Zhou
    Qin, Wei
    Zhang, Yuliang
    Liu, Shengzhong
    Li, Can
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (18) : 9401 - 9405
  • [22] Towards highly stable and efficient planar perovskite solar cells: Materials development, defect control and interfacial engineering
    Xiang, Huimin
    Liu, Pengyun
    Wang, Wei
    Ran, Ran
    Zhou, Wei
    Shao, Zongping
    [J]. CHEMICAL ENGINEERING JOURNAL, 2021, 420
  • [23] Efficient and stable perovskite solar cells by interface engineering at the interface of electron transport layer/perovskite
    Kumar, Anjan
    Singh, Sangeeta
    Sharma, Amit
    Ahmed, Emad M.
    [J]. OPTICAL MATERIALS, 2022, 132
  • [24] Highly efficient and stable perovskite solar cells produced by maximizing additive engineering
    Qiu, Linlin
    Zou, Jiacheng
    Chen, Wei-Hsiang
    Dong, Lika
    Mei, Deqiang
    Song, Lixin
    Wang, Jieqiong
    Jiang, Pei-Cheng
    Du, Pingfan
    Xiong, Jie
    [J]. SUSTAINABLE ENERGY & FUELS, 2021, 5 (02): : 469 - 477
  • [25] Lewis base multisite ligand engineering in efficient and stable perovskite solar cells
    Ma, Danqing
    He, Dongmei
    Zhu, Qing
    Liu, Xinxing
    Yu, Yue
    Shai, Xuxia
    Zhang, Zhengfu
    Zhang, Sam
    Feng, Jing
    Yi, Jianhong
    Chen, Jiangzhao
    [J]. JOURNAL OF ENERGY CHEMISTRY, 2024, 99 : 277 - 291
  • [26] Dual Interfacial Modification Engineering for Highly Efficient and Stable Perovskite Solar Cells
    Liu, Le
    Liu, Dali
    Sun, Rui
    Zhou, Donglei
    Wu, Yanjie
    Zhuang, Xinmeng
    Liu, Shuainan
    Bi, Wenbo
    Wang, Nan
    Zi, Lu
    Zhang, Boxue
    Shi, Zhichong
    Song, Hongwei
    [J]. SOLAR RRL, 2021, 5 (03):
  • [27] Effective Multifunctional Additive Engineering for Efficient and Stable Inverted Perovskite Solar Cells
    Li, Fuqiang
    Huang, Xiaofeng
    Xue, Junpeng
    Liu, Fengwu
    Kim, Danbi
    Yang, Hyun-Seock
    Yang, Eunhye
    Shin, Insoo
    Kim, Junghwan
    Lee, Bo Ram
    Park, Sung Heum
    [J]. SOLAR RRL, 2022, 6 (11)
  • [28] Diffusion engineering of ions and charge carriers for stable efficient perovskite solar cells
    Enbing Bi
    Han Chen
    Fengxian Xie
    Yongzhen Wu
    Wei Chen
    Yanjie Su
    Ashraful Islam
    Michael Grätzel
    Xudong Yang
    Liyuan Han
    [J]. Nature Communications, 8
  • [29] Dimension engineering on cesium lead iodide for efficient and stable perovskite solar cells
    Liao, Jin-Feng
    Rao, Hua-Shang
    Chen, Bai-Xue
    Kuang, Dai-Bin
    Su, Cheng-Yong
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (05) : 2066 - 2072
  • [30] Additive Engineering for Stable and Efficient Dion–Jacobson Phase Perovskite Solar Cells
    Min Liu
    Thierry Pauporté
    [J]. Nano-Micro Letters, 2023, 15