Triethylsilane introduced precursor engineering towards efficient and stable perovskite solar cells

被引:1
|
作者
Huang, Yuanmei [1 ,2 ]
Zhou, Wencai [1 ]
Zhong, Huaying [3 ]
Chen, Wei [4 ,5 ]
Yu, Guoping [1 ]
Zhang, Wenjie [4 ,5 ]
Wang, Shuanglin [1 ]
Sui, Yujie [1 ]
Yang, Xin [2 ]
Zhuang, Yu [2 ]
Tang, Jun [1 ]
Cao, Leifeng [4 ,5 ]
Mueller-Buschbaum, Peter [3 ,6 ]
Aierken, Abuduwayiti [2 ]
Han, Peigang [1 ]
Tang, Zeguo [1 ]
机构
[1] Shenzhen Technol Univ, Coll New Mat & New Energies, Lantian Rd 3002, Shenzhen 518118, Peoples R China
[2] Yunnan Normal Univ, Sch Energy & Environm, Juxian Rd 768, Kunming 650500, Peoples R China
[3] Tech Univ Munich, TUM Sch Nat Sci, Dept Phys, Chair Funct Mat, James Franck Str 1, D-85748 Garching, Germany
[4] Shenzhen Technol Univ, Ctr Adv Mat Diagnost Technol, Shenzhen Key Lab Ultraintense Laser & Adv Mat Tech, Shenzhen 518118, Peoples R China
[5] Shenzhen Technol Univ, Coll Engn Phys, Shenzhen 518118, Peoples R China
[6] Tech Univ Munich, Heinz Maier Leibnitz Zent MLZ, Lichtenbergstr 1, D-85748 Garching, Germany
关键词
Triethylsilane; Precursor engineering; Two-step method; Stability; METAL-HALIDE PEROVSKITES; DEPOSITION;
D O I
10.1016/j.mtadv.2023.100449
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Perovskite solar cells (PSCs) are believed to be optimistic for commercial deployment soon since the power conversion efficiency of PSCs presently reaches up to 26.10 % due to the intensive efforts these years. The two-step method is comparatively more suitable for scalable perovskite films, where lead halides and ammonium salts are prepared in separate precursors and deposited sequentially. Therefore, the reactivity between these two precursors governs the quality of final perovskite films and the intrinsic non-radiative recombination (NRR) at the perovskite's interfaces. Herein, we empowered both types of precursors, one by one and then simultaneously, with triethylsilane (TES) to investigate its effect on the (FAPbI3)1-x (MAPbBr3)x perovskite's morphological and optoelectronic properties. TES, with ethyl moieties and metalloid center, in ammonium salts delivers homoge-neous perovskites' crystals and inhibits the NRR of perovskite films by reducing the defects and trap states. As a result, the optimized devices exhibit not only improved device performance (particularly for the increased fill factors and open circuit voltages) but also enhanced stabilities.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Precursor engineering for efficient and stable perovskite solar cells
    Luan, Fuyuan
    Li, Haiyan
    Gong, Shuiping
    Chen, Xinyu
    Shou, Chunhui
    Wu, Zihua
    Xie, Huaqing
    Yang, Songwang
    [J]. NANOTECHNOLOGY, 2023, 34 (05)
  • [2] Facet Engineering for Stable, Efficient Perovskite Solar Cells
    Ma, Chunqing
    Gratzel, Michael
    Park, Nam-Gyu
    [J]. ACS ENERGY LETTERS, 2022, 7 (09) : 3120 - 3128
  • [3] Additive Engineering for Efficient and Stable Perovskite Solar Cells
    Zhang, Fei
    Zhu, Kai
    [J]. ADVANCED ENERGY MATERIALS, 2020, 10 (13)
  • [4] Towards Stable, 30% Efficient Perovskite Solar Cells
    Park, Nam-Gyu
    [J]. KOREAN JOURNAL OF CHEMICAL ENGINEERING, 2024,
  • [5] Intermediate phase engineering towards efficient and stable perovskite solar cells: Principles and strategies
    Wu, Zihan
    Chen, Jianlin
    Zeng, Yuxi
    Ju, Jiayao
    Zhao, Wei
    Huang, Jincheng
    Peng, Zhuoyin
    Chen, Jian
    [J]. MATERIALS TODAY COMMUNICATIONS, 2023, 37
  • [6] Hetero-perovskite engineering for stable and efficient perovskite solar cells
    Cheng, Xiaohua
    Han, Ying
    Cui, Bin-Bin
    [J]. SUSTAINABLE ENERGY & FUELS, 2022, 6 (14): : 3304 - 3323
  • [7] Dimensional Engineering in Efficient and Stable Inverted Perovskite Solar Cells
    Zhu, Qing
    Yu, Yue
    Liu, Xinxing
    He, Dongmei
    Shai, Xuxia
    Feng, Jing
    Yi, Jianhong
    Chen, Jiangzhao
    [J]. SOLAR RRL, 2024, 8 (17):
  • [8] Additive engineering for highly efficient and stable perovskite solar cells
    Lee, Do-Kyoung
    Park, Nam-Gyu
    [J]. APPLIED PHYSICS REVIEWS, 2023, 10 (01)
  • [9] Interface Engineering for Highly Efficient and Stable Perovskite Solar Cells
    Zhao, Chenxu
    Zhang, Hong
    Krishna, Anurag
    Xu, Jia
    Yao, Jianxi
    [J]. ADVANCED OPTICAL MATERIALS, 2024, 12 (07)
  • [10] Perovskite Nanocomposite Layers Engineering for Efficient and Stable Solar Cells
    Bkkar, Muhammad Ahmad
    Olekhnovich, Roman Olegovich
    Uspenskaya, Mayya Valerievna
    [J]. JOURNAL OF NANO RESEARCH, 2022, 71 : 71 - 109