Heteroclinic solutions for a difference equation involving the mean curvature operator

被引:3
|
作者
Wang, Shaohong [1 ,2 ]
Zhou, Zhan [1 ,2 ]
机构
[1] Guangzhou Univ, Sch Math & Informat Sci, Guangzhou 510006, Peoples R China
[2] Guangzhou Univ, Guangzhou Ctr Appl Math, Guangzhou 510006, Peoples R China
基金
中国国家自然科学基金;
关键词
Heteroclinic solution; Difference equation; Mean curvature operator; Critical point theory; BOUNDARY-VALUE PROBLEM; EXISTENCE; ORBITS;
D O I
10.1016/j.aml.2023.108827
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By using critical point theory, the existence of heteroclinic solutions for a second-order difference equation involving the mean curvature operator is obtained, and the values of solutions at -infinity and +infinity are more general than existing results in the literature. An example is presented to demonstrate the applicability of our main results. (c) 2023 Elsevier Ltd. All rights reserved.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] MULTIPLE SOLUTIONS FOR THE MEAN CURVATURE EQUATION
    Lorca, Sebastian
    Montenegro, Marcelo
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2010, 35 (01) : 61 - 68
  • [22] Solutions for the prescribing mean curvature equation
    Cao, Dao-min
    Peng, Shuang-jie
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2008, 24 (03): : 497 - 510
  • [23] BOUNDED IN THE MEAN OF ORDER p SOLUTIONS OF A DIFFERENCE EQUATION WITH JUMP OF AN OPERATOR COEFFICIENT
    Gorodniy, M. F.
    Gonchar, I. V.
    THEORY OF PROBABILITY AND MATHEMATICAL STATISTICS, 2019, 101 : 93 - 97
  • [24] Radial solutions for Neumann problems involving prescribed mean curvature operator in a ball and in an annular domain
    Liu, Meiyu
    Pei, Minghe
    Wang, Libo
    APPLIED MATHEMATICS LETTERS, 2024, 158
  • [25] CONNECTED COMPONENTS OF POSITIVE SOLUTIONS FOR A DIRICHLET PROBLEM INVOLVING THE MEAN CURVATURE OPERATOR IN MINKOWSKI SPACE
    Ma, Ruyun
    Xu, Man
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2019, 24 (06): : 2701 - 2718
  • [26] Multiple positive radial solutions for a Dirichlet problem involving the mean curvature operator in Minkowski space
    Bereanu, Cristian
    Jebelean, Petru
    Torres, Pedro J.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2013, 265 (04) : 644 - 659
  • [27] A weighted quasilinear equation related to the mean curvature operator
    Cano-Casanova, Santiago
    Lopez-Gomez, Julian
    Takimoto, Kazuhiro
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (15) : 5905 - 5923
  • [28] HETEROCLINIC SOLUTIONS OF THE PRESCRIBED CURVATURE EQUATION WITH A DOUBLE-WELL POTENTIAL
    Bonheure, Denis
    Obersnel, Franco
    Omari, Pierpaolo
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2013, 26 (11-12) : 1411 - 1428
  • [29] On unbounded solutions for differential equations with mean curvature operator
    Dosla, Zuzana
    Marini, Mauro
    Matucci, Serena
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2025, 75 (01) : 215 - 234
  • [30] ON CUSP SOLUTIONS TO A PRESCRIBED MEAN CURVATURE EQUATION
    Echart, Alexandra K.
    Lancaster, Kirk E.
    PACIFIC JOURNAL OF MATHEMATICS, 2017, 288 (01) : 47 - 54