Comprehensive identification of diverse ribosomal RNA modifications by targeted nanopore direct RNA sequencing and JACUSA2

被引:6
|
作者
Naarmann-de Vries, Isabel S. [1 ,2 ]
Zorbas, Christiane [3 ]
Lemsara, Amina [1 ]
Piechotta, Michael [1 ]
Ernst, Felix G. M. [3 ]
Wacheul, Ludivine [3 ]
Lafontaine, Denis L. J. [3 ]
Dieterich, Christoph [1 ,2 ,4 ]
机构
[1] Univ Hosp Heidelberg, Sect Bioinformat & Syst Cardiol, Heidelberg, Germany
[2] German Ctr Cardiovasc Res DZHK, Partner Site Heidelberg Mannheim, Heidelberg, Germany
[3] Univ libre Bruxelles ULB, RNA Mol Biol, Fonds Rech Sci FRS FNRS, Gosselies, Belgium
[4] Univ Hosp Heidelberg, Klaus Tschira Inst Integrat Computat Cardiol, Dept Internal Med 3, Sect Bioinformat & Syst Cardiol, Neuenheimer Feld 669, D-69120 Heidelberg, Germany
关键词
RNA modification; nanopore; direct RNA-seq; ribosomal RNA; RNA methylation; cytidine acetylation; DIMETHYLASE DIM1P; HUMAN NAT10; YEAST; METHYLATION; CELLS; ITS1;
D O I
10.1080/15476286.2023.2248752
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Ribosomal RNAs are decorated by numerous post-transcriptional modifications whose exact roles in ribosome biogenesis, function, and human pathophysiology remain largely unknown. Here, we report a targeted direct rRNA sequencing approach involving a substrate selection step and demonstrate its suitability to identify differential modification sites in combination with the JACUSA2 software. We compared JACUSA2 to other tools designed for RNA modification detection and show that JACUSA2 outperforms other software with regard to detection of base modifications such as methylation, acetylation and aminocarboxypropylation. To illustrate its widespread usability, we applied our method to a collection of CRISPR-Cas9 engineered colon carcinoma cells lacking specific enzymatic activities responsible for particular rRNA modifications and systematically compared them to isogenic wild-type RNAs. Besides the numerous 2'-O methylated riboses and pseudouridylated residues, our approach was suitable to reliably identify differential base methylation and acetylation events. Importantly, our method does not require any prior knowledge of modification sites or the need to train complex models. We further report for the first time detection of human rRNA modifications by direct RNA-sequencing on Flongle flow cells, the smallest-scale nanopore flow cell available to date. The use of these smaller flow cells reduces RNA input requirements, making our workflow suitable for the analysis of samples with limited availability and clinical work.
引用
收藏
页码:652 / 665
页数:14
相关论文
共 50 条
  • [21] Direct detection of RNA modifications and structure using single-molecule nanopore sequencing
    Stephenson, William
    Razaghi, Roham
    Busan, Steven
    Weeks, Kevin M.
    Timp, Winston
    Smibert, Peter
    CELL GENOMICS, 2022, 2 (02):
  • [22] Direct identification of A-to-I editing sites with nanopore native RNA sequencing
    Tram Anh Nguyen
    Jia Wei Joel Heng
    Pornchai Kaewsapsak
    Eng Piew Louis Kok
    Dominik Stanojević
    Hao Liu
    Angelysia Cardilla
    Albert Praditya
    Zirong Yi
    Mingwan Lin
    Jong Ghut Ashley Aw
    Yin Ying Ho
    Kai Lay Esther Peh
    Yuanming Wang
    Qixing Zhong
    Jacki Heraud-Farlow
    Shifeng Xue
    Bruno Reversade
    Carl Walkley
    Ying Swan Ho
    Mile Šikić
    Yue Wan
    Meng How Tan
    Nature Methods, 2022, 19 : 833 - 844
  • [23] Direct identification of A-to-I editing sites with nanopore native RNA sequencing
    Nguyen, Tram Anh
    Heng, Jia Wei Joel
    Kaewsapsak, Pornchai
    Kok, Eng Piew Louis
    Stanojevic, Dominik
    Liu, Hao
    Cardilla, Angelysia
    Praditya, Albert
    Yi, Zirong
    Lin, Mingwan
    Aw, Jong Ghut Ashley
    Ho, Yin Ying
    Peh, Kai Lay Esther
    Wang, Yuanming
    Zhong, Qixing
    Heraud-Farlow, Jacki
    Xue, Shifeng
    Reversade, Bruno
    Walkley, Carl
    Ho, Ying Swan
    Sikic, Mile
    Wan, Yue
    Tan, Meng How
    NATURE METHODS, 2022, 19 (07) : 833 - +
  • [24] Sequencing accuracy and systematic errors of nanopore direct RNA sequencing
    Liu-Wei, Wang
    van der Toorn, Wiep
    Bohn, Patrick
    Hoelzer, Martin
    Smyth, Redmond P.
    von Kleist, Max
    BMC GENOMICS, 2024, 25 (01):
  • [25] NanoTrans:an integrated computational framework for comprehensive transcriptome analysis with nanopore direct RNA sequencing
    Ludong Yang
    Xinxin Zhang
    Fan Wang
    Li Zhang
    Jing Li
    JiaXing Yue
    Journal of Genetics and Genomics, 2024, 51 (11) : 1300 - 1309
  • [26] Quantitative analysis of tRNA abundance and modifications by nanopore RNA sequencing
    Morghan C. Lucas
    Leszek P. Pryszcz
    Rebeca Medina
    Ivan Milenkovic
    Noelia Camacho
    Virginie Marchand
    Yuri Motorin
    Lluís Ribas de Pouplana
    Eva Maria Novoa
    Nature Biotechnology, 2024, 42 : 72 - 86
  • [27] NanoTrans: an integrated computational framework for comprehensive transcriptome analysis with nanopore direct RNA sequencing
    Yang, Ludong
    Zhang, Xinxin
    Wang, Fan
    Zhang, Li
    Li, Jing
    Yue, Jia-Xing
    JOURNAL OF GENETICS AND GENOMICS, 2024, 51 (11) : 1300 - 1309
  • [28] Quantitative analysis of tRNA abundance and modifications by nanopore RNA sequencing
    Lucas, Morghan C.
    Pryszcz, Leszek P.
    Medina, Rebeca
    Milenkovic, Ivan
    Camacho, Noelia
    Marchand, Virginie
    Motorin, Yuri
    de Pouplana, Lluis Ribas
    Novoa, Eva Maria
    NATURE BIOTECHNOLOGY, 2024, 42 (01) : 72 - 86
  • [29] Adaptive sampling for nanopore direct RNA-sequencing
    Naarmann-de Vries, Isabel S.
    Gjerga, Enio
    Gandor, Catharina L. A.
    Dieterich, Christoph
    RNA, 2023, 29 (12) : 1939 - 1949
  • [30] Nanopore sequencing of internal 2′-PO4 modifications installed by RNA repair
    White, Laura K.
    Strugar, Saylor M.
    MacFadden, Andrea
    Hesselberth, Jay R.
    RNA, 2023, 29 (06) : 847 - 861