Lagrangian reduction of forced discrete mechanical systems

被引:0
|
作者
Caruso, Matias, I [1 ,2 ,3 ]
Fernandez, Javier [4 ]
Tori, Cora [2 ,5 ]
Zuccalli, Marcela [1 ,2 ]
机构
[1] Univ Nacl La Plata, Fac Ciencias Exactas, Dept Matemat, La Plata, Argentina
[2] Ctr Matemat La Plata CMaLP, La Plata, Argentina
[3] Consejo Nacl Invest Cient & Tecn CONICET, Buenos Aires, Argentina
[4] Univ Nacl Cuyo CNEA, Inst Balseiro, San Carlos De Bariloche, Argentina
[5] Univ Nacl La Plata, Fac Ingn, Dept Ciencias Basicas, La Plata, Argentina
关键词
geometric mechanics; forced discrete mechanical systems; symmetry and reduction; LIE-GROUPS; INTEGRATORS;
D O I
10.1088/1751-8121/aceae3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper we propose a process of Lagrangian reduction and reconstruction for symmetric discrete-time mechanical systems acted on by external forces, where the symmetry group action on the configuration manifold turns it into a principal bundle. We analyze the evolution of momentum maps and Poisson structures under different conditions.
引用
收藏
页数:25
相关论文
共 50 条
  • [31] REDUCTION OF CONTROLLED LAGRANGIAN AND HAMILTONIAN SYSTEMS WITH SYMMETRY
    Chang, Dong Eui
    Marsden, Jerrold E.
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2004, 43 (01) : 277 - 300
  • [32] VARIATIONAL REDUCTION OF LAGRANGIAN SYSTEMS WITH GENERAL CONSTRAINTS
    Grillo, Sergio
    Zuccalli, Marcela
    JOURNAL OF GEOMETRIC MECHANICS, 2012, 4 (01): : 49 - 88
  • [33] Routh reduction and the class of magnetic Lagrangian systems
    Langerock, B.
    Andres, E. Garcia-Torano
    Cantrijn, F.
    JOURNAL OF MATHEMATICAL PHYSICS, 2012, 53 (06)
  • [34] On a Lagrangian Reduction and a Deformation of Completely Integrable Systems
    Arnaudon, Alexis
    JOURNAL OF NONLINEAR SCIENCE, 2016, 26 (05) : 1133 - 1160
  • [35] DIMENSION REDUCTION FOR DISCRETE SYSTEMS
    Alicandro, R.
    Braides, A.
    Cicalese, M.
    APPLIED AND INDUSTRIAL MATHEMATICS IN ITALY II, 2007, 75 : 25 - +
  • [36] Lagrangian geometrical model of the rheonomic mechanical systems
    Frigioiu, Camelia
    Hedrih, Katica
    Bîrsan, Iulian Gabriel
    World Academy of Science, Engineering and Technology, 2011, 73 : 352 - 358
  • [37] Nonlinear control of mechanical systems: A Lagrangian perspective
    Murray, Richard M.
    Annual Reviews in Control, 21 : 31 - 42
  • [38] ON OPTIMAL DISCRETE CORRECTION OF FORCED MOTION OF STOCHASTIC SYSTEMS
    GUSKOV, IP
    PMM JOURNAL OF APPLIED MATHEMATICS AND MECHANICS, 1966, 30 (05): : 1074 - &
  • [39] Strongly decaying solutions of neonlinear forced discrete systems
    Marini, M
    Matucci, S
    Rehák, P
    PROCEEDINGS OF THE SIXTH INTERNATIONAL CONFERENCE ON DIFFERENCE EQUATIONS: NEW PROGRESS IN DIFFERENCE EQUATIONS, 2004, : 493 - 500
  • [40] Principal trajectories of forced vibrations for discrete and continuous systems
    Pilipchuk, VN
    MECCANICA, 2000, 35 (06) : 497 - 517